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Abstract—This paper presents the experimental results conducted 
with a new technological solution that can enable the privacy-
preserving exploitation of large private datasets through 
collaborative machine learning. The solution has been developed 
under the exploratory research project AICHAIN (SESAR2020 
ER04). The final aim of this solution is to enable air traffic 
management (ATM) operations to be improved with the added 
value provided by datasets that may be subject to strict privacy 
requirements and cannot be shared. Experiments have been run 
with two relevant use cases around Demand Capacity Balancing 
(DCB) services. Results prove that airline´s private data can 
improve the machine learning models performance in operations.  

Keywords-component; privacy-preserving machine learning; 
federated learning; air traffic management; demand and capacity 
balancing.  

I.  INTRODUCTION 

The European Air Traffic Management (ATM) is under such 
process of digital transformation and is moving towards what 
has been recently labelled as the Digital European Sky [1]. In 
this context, a known study about automation in ATM [2] has 
analysed the potential of Artificial Intelligence (AI) to enable the 
required levels of automation in ATM to support the transition 
towards Trajectory Based Operations (TBO). Such report 
concludes that machine learning (ML) –including Deep 
Learning (DL)– techniques are expected to have a key role in the 
future ATM due to their potential to enhance predictability and 
to enable advanced optimisation and decision-support tools. 

In the early definition of the TBO concept, data sharing was 
identified as a key enabler for the increased coordination among 
parties. However, data privacy is a major challenge is such 
approach, because: i) some relevant pieces of operational 
information are strategic and business-sensitive for ATM 
stakeholders (e.g. cost structure of flights, fuelling policies, 
aircraft weight, etc.) and will unlikely be shared; and ii) data 

protection laws (i.e. GDPR) may impose additional privacy 
constraints to data sharing (e.g., passenger data). As a result, 
some of the pieces of information that are relevant to achieve the 
desired efficient and resilient ATM operations are just non-
shareable, i.e. data subject to strong privacy requirements.   

The cost of opportunity of not exploiting such private/non-
shareable data might be large in the context of the digital ATM. 
AI techniques typically require as much data as possible to 
perform well, from which the afore-mentioned non-shareable 
data might be important sources. The limits of the data sharing 
approach to access the private operational data from 
stakeholders may undermine the ability of ML techniques to 
improve the predictability of ATM operations and ultimately 
optimise the quality of service of ATM system. 

Federated Learning (FL) [3] is a new enabler technology that 
can facilitate the development of ML models while preserving 
the privacy of the private data sources. FL is an evolution of 
traditional ML/DL methods that allow training a model in a 
distributed and collaborative way: the model parameters are first 
locally updated by each data owner and afterwards combined 
into a single model through novel aggregation techniques. This 
way, the federated model leverages all available training data, 
while no single data record is processed by other than the data 
owner itself.  

On this basis, the AICHAIN project has developed a 
technological solution that uses federated learning to train –and 
serve– machine learning models while respecting the privacy of 
stakeholders’ sensitive data. The solution has considered the 
combination of federated learning with other technologies (e.g. 
blockchain) to satisfy all the privacy and operational 
requirements in the ATM domain [4]. Such solution has been 
partially validated experimentally with two ATM case studies: 
the prediction of flight Estimated Time of Take-off (ETOT) and 



the prediction of the 2D routes flown by Airspace Users (AUs) 
in the tactical phase of flight. 

This paper presents the experimental results from the two 
case studies and discusses about the added value of the FedML 
approach and its potential to improve the ML models used in 
ATM operations. The experiments involved the use of private 
datasets that normally cannot be available through the 
conventional data sharing paradigm. The private data features 
used in this paper have been kindly provided by SWISS 
International Airlines and made available to the AICHAIN 
project consortium to facilitate the experiments.  

The reminder of the paper is structured as follows: Section II 
provides the state of the art of federated learning and clarifies de 
concept. Section III presents the proposed case studies and the 
experimental plan followed to conduct them. Section IV 
discusses the experimental results and illustrates the value of the 
private data within the case studies. The paper ends with the 
conclusions and the identification of next steps in Section V. 

II. STATE OF THE ART 

A. Federated machine learning 

Federated Machine Learning (FedML) is a new concept 
proposed by Google in 2016 [5][3][6][7], in which input data 
privacy can be preserved while ML models can be trained 
leveraging the best data available.  

Figure 1 illustrates the basic FedML concept and its 
topologic logical architecture. FedML consists of sharing ML 
model parameters (e.g. coefficients) instead of the data, and 
training them in a distributed and collaborative manner. Only the 
ML parameters after the local training at nodes are shared among 
the federation members and then aggregated in the master node. 
The underlying idea can be described in four iterative steps: 1) 
the server sends the last version of the global model (e.g., a 
neural network) to the nodes; 2) the nodes locally update that 
model with training iterations using their local data; 3) each node 
sends back the model updated locally to the server; and 4) the 
server composes the updated version of the general model 
through mathematical aggregation functions. Note that this way, 
the private datasets never left their owner premises, while it is 
still possible to build, through collaboration, a complete ML 
model that can then be used to make predictions and/or optimise 
a certain process (e.g. an ATM process).  

It is worth noting that, in addition to the privacy protection 
of the input data, FedML technologies are also useful to speed 
up the training of large and complex ML models. This is due to 
the de-centralised and parallelised nature of the federated 
training. Therefore, federated training presents a great potential 
for real time ML applications (training, prediction and 
optimisation of the ML models) [22]. The use of bandwidth is 
also more efficient (i.e. less costly and faster) compared to the 
data sharing approach, since exchanging ML model parameters 
typically require exchanging much less amount of information 
than sharing the raw data.  

 

 
Figure 1. Federated machine learning concept and architecture 

Many traditional machine learning methods have already 
been successfully adapted to the FedML case, including deep   
Convolutional Neural Networks (CNNs), Long-Short-Term-
Memory (LSTMs), Support Vector Machines (SVMs), 
conformal predictors, and ensemble-type methods [7][8][9][10]. 
However, while all these efforts helped to increase the levels of 
security and input data privacy compared to traditional learning 
(centralised and dependent on pooled data), there still are some 
open gaps that need to be addressed, like trust (transparency, 
tamper-proofness and auditability), data privacy, and model 
lifecycle governance [11].  

B. Challenges and limitations of federated machine 
learning 

The FedML approach presents some challenges and 
limitations that need to be addressed before it can be used in 
operational environments.  

Some of these shortcomings are related to cyber-security, 
trustworthiness, runtime performance and/or other 
requirements. Hence, a combination of privacy enhancing tools 
is normally needed to ensure full covering of all privacy 
requirements (e.g., input and output privacy, as well as input and 
output verification/trust, and information flows governance).  

An example of a privacy open challenge related to cyber-
security and output privacy can be illustrated by a bad-
intentioned “attacker” that could use the intermediate training 
gradients, i.e., parameters that are shared by the local nodes after 
the training of the model with the local private data, to infer 
important information about the private data used during the 
training of the shared ML model [12][13]. This would be a major 
issue in the ATM domain since the air transport industry is a 
very competitive environment and some stakeholders could 
potentially monitor and learn from others to improve their 
market strengths. This risk of potentially losing market 
competitiveness could rapidly discourage the participation of a 
wide number of stakeholders to the collaborative training of 
FedML models, consequently undermining the expected 
operational benefits of the technology. 

Another important aspect to consider when designing a 
federated learning system is that the effective collaboration of 
the data owners is required to correctly train the global model. 
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In practice, it should not be assumed by default that all the 
federated parties (data owners) will be willing to cooperate in 
the collaborative training of a model. Some contributors could 
limit their collaboration either in look for cost reduction or 
simply due to unwillingness to participate. Hence, a system of 
governance that steers the federated alliance and aligns the 
incentives/interests of each individual with the goals of the 
system is required.  

It is worth mentioning that the AICHAIN solution has 
addressed the above privacy and governance challenges. Several 
technologies have been identified to enhance the federated 
learning core engine of the solution [4]. For instance, in the last 
years the novel technology of Blockchain [14] has emerged with 
great potential to provide trust to some processes of the FedML 
approach. In addition, Blockchain can also enable the use of 
trustable digital tokens, which could be used to enable advanced 
governance and incentives mechanism based on the exchange of 
digital assets with added value for the token holders. More 
details about how the AICHAIN project has addressed the topic 
of governance and incentives in deliverable D4.2 “Governance 
and Incentives model” (available in the project webpage [4]). 

For the experiments presented in this paper (aimed to prove 
the feasibility and added value of exploiting private datasets in 
ATM applications), the challenges mentioned above can be 
simplified and disregarded, since it has been assumed that all the 
federated participants act as unconditional honest participants.  

III. EXPERIMENTAL DESIGN AND USE-CASES 

Two ATM case studies have been developed with a double 
purpose: i) to validate the AICHAIN solution prototype; and ii) 
to demonstrate the potential value of the FedML approach in the 
context of the Digital European Sky.  

The case studies selected address some well-known ATM 
challenges and are both considered high priority cases by the 
Network Manager (i.e. EUROCONTROL). Some 
improvements have been recently achieved in the two use cases 
thanks to the introduction of machine learning models to address 
them. However, these models were trained using data features 
that were collected and available by EUROCONTROL only. 
The hypothesis validated experimentally in this paper is that the 
performance of such ML models could potentially be enhanced  
if new relevant private/non-sharable data features are available 
to the model training processes through FedML. Following 
subsections present each case study, the data available and the 
experimental methods followed. 

A. Use case 1: Estimated Take-Off Time (ETOT)  

At present, the Estimated Take-Off Time (ETOT) of each 
individual flight is obtained from the Enhanced Tactical Flow 
Management System (ETFMS) Flight Data (EFD), which is 
regularly updated since the submission of the Initial Flight Plan 
(IFP) up to the Actual Take-Off Time (ATOT). The ETOT 
calculated by the ETFMS system is subject to many sources of 
uncertainty that hinder the actual predictability of the traffic at 
sectors. Some sources of discrepancy between the ETOT and the 
ATOT include: unforeseen network congestion; severe weather 

constraints; reactionary delays; and the reaction (flight plan 
changes) of the airspace users to these changing conditions.  

A study published by EUROCONTROL about A-CDM 
(airport collaborative decision making) [15][16] presented  
quantitative evidence showing that improving the take-off time 
predictability can significantly prevent sector over-deliveries, 
which could be used to reduce the en-route capacity buffers 
(latent capacities) without compromising the required levels of 
safety. Figure 2 illustrates the relationship between higher 
predictability and the possibility of reducing the buffers in the 
declared/published sector capacities while maintaining the same 
levels of safety.  

The same study concluded that, following a wider 
implementation of Airport CDM, the benefits could be:  

 Potential increase of sector capacity within the core 
area by up to 4% which equates to between 1-2 aircrafts 
per sector 

 Reduction of en-route delays of between 33%-50%.  

 Some sectors which are expected to be saturated are not 
really saturated. As a result, some imposed regulations 
may not be required. 

A more recent study [17] updated and refined the previous 
analysis pointing that the benefits could be less significant than 
the ones suggested in the previous study, but still reaffirmed that 
increasing ETOT predictability may lead to significant increase 
in the actual sector capacities.  

Similarly, the aim of the case study addressed in this paper 
is to improve the Estimated Take-Off Time (ETOT) accuracy 
before the departure of flights, for the following reasons:  

 To reduce the capacity buffers at sectors (less buffers 
will lead to higher declared capacities). 

 To reduce the number of regulations (better accuracy in 
the assessment of potential sector overloads). 

 To enable traffic complexity management (i.e. more 
effective ATCFM/DCB measures at the level of 4D 
trajectories instead of at the level of flows).  

 

 
Figure 2. Higher predictability can lead to more sector capacity (source: the 

Airspace Architecture Study) 
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Regarding the complexity management possibilities, it is 
worth noting that the Maastricht Upper Area Control Centre 
(MUAC) has developed the Traffic Predictions Improvements 
(TPI) project with the purpose of optimising the use of Air 
Traffic Controllers (ATCOs) time to reduce the uncertainty of 
capacity predictions. The project aimed at improving 
predictability of traffic, allowing MUAC to make a more 
accurate view of the incoming traffic and consequently apply a 
better management of capacity and a better anticipation of the 
ATFCM and Air Traffic Control (ATC) measures on the 
demand. To achieve the goal MUAC developed ML models to 
address the following sub-problems: route prediction, 4D 
trajectory prediction and sector sequence prediction. The model 
used in this paper for this ETOT case study is a simplified 
version of one that was deployed as part of the TPI project [18]. 

Trained against (ATOT - ETOT) target, this model provides 
an improved ETOT value based on the initial ETOT (and other 
features as input). This prediction will then contribute to the 
improvement of the Demand Profile. A more accurate ETOT can 
help the ANSPs and the NM to better assess the traffic demand 
at sectors. For some short-term tactical planning timeframes 
(e.g. less than 1 hour) more accurate ETOTs may facilitate the 
management of traffic complexity and even trajectory 
interactions (strategic conflict management). This should result 
in less unnecessary constraints on the traffic demand and in a 
better planning of the capacity resources, thus potentially 
leading to a reduction of the latent capacities (fewer capacity 
buffers). 

The model structure of each training sample consists of a set 
of input features (like the departure and destination airports, the 
turn-around time, the ATFM delay, the ETOT, the LAT with 
respect to ETOT, etc.) and a target to be predicted, which is the 
ATOT of the corresponding flight. A set of input features 
extracted from the (private) data provided by SWISS for the 
same flights has been used to generate a new 
enriched/augmented model. Table I and Table II show, 
respectively, the most important non-private and private features 
that influence the most in the model performance. The ones 
identified as the most important will be mentioned in the section 
of results. The comprehensive list of the NM data and SWISS 
features used to develop the ETOT enhancer model can be found 
in Deliverable D3.2 (Operational value) of the AICHAIN 
project, which is based on the former one published in [18].  

 

TABLE I.  NON-PRIVATE FEATURES DESCRIPTION FOR USE CASE 1 

ADEP Aerodrome of departure of the flight 

ADES Aerodrome of destination of the flight 

ADEP_LEG Aerodrome of departure of the previous flight leg 

ADEPETO_IFP_TO
_ADEPETO 

Difference between the current Estimated Take-Off 
Time (ETOT) and the ETOT according to the 
initial flight plan 

ADEPETO_IFP_TO
_ADEPETO_LEG 

Delay of the previous leg 

ARCTYP Aircraft Type (ADEXP) 

ATFMDELAY 
The ATFM delay allocated by the ETFMS system 
(via CTOT) to that flight (at the time the sample 
was generated) 

CDMSTATUS 
cdmstatus values as available in ETFMS (not present 
for non-CDM airports) 

DAY Day of the week 

EOBT_IFP_TO_EO
BT 

Difference between the current Estimated Off-
Block Time (EOBT) and the EOBT according to 
the Initial Flight Plan 

EOBT_IFP_TO_EO
BT_LEG 

Same as EOBT_IFP_TO_EOBT but for the 
previous flight leg 

EVENT Type of sample: message, system event or manual  

EVENT_LEG 
Last source of the sample sent by the previous flight 
leg (see EVENT feature) 

FLTSTATE Status: filed, active, regulated, slot_issued  

FLSTATE_LEG 
Last flight status of the previous flight leg (see 
FLTSTATE feature) 

FLIGHT_DURATI
ON_LEG 

Scheduled duration of the flight 

HOUR Hour of the day 

MONTH Month of the year 

RWY 
Last letter of the Standard Instrumental Departure 
(SID) procedure. Used as a ‘proxy’ for the take-off 
runway 

TIME_FROM_REG
_CHANGE 

Time from allocation or change of aircraft 
registration number (i.e., airframe) to the flight. 

TIMESTAMP_IFP_
TO_TIMESTAMP 

Time form the reception of the initial flight plan at 
the ETFMS 

TIMESTAMP_LEG
_TO_TIMESTAMP 

Time from last sample of the previous flight leg 

TIMESTAMP_TO_
TSAT 

Time to Target Start-up Approval Time (TSAT) 

TIMESTAMP_TO_
EOBT 

Time to Expected Off-Block Time (EOBT) 

TIMESTAMP_TO_
TOBT 

Time to Target Off -Block Time (TOBT) 

TURNAROUND_L
EG 

Expected turn-around time (can be negative if 
previous flight has a large delay) 

TAXITIME 
The taxi-time-field contains the most recently 
known taxi-time value by ETFMS at the time of the 
sample 

TABLE II.  PRIVATE FEATURES DESCRIPTION FOR USE CASE 1 

NUMPAXBOOKE
D 

Number of passengers that paid a ticket 

SWISS_RWYNUM Runway ID allocated to the flight 

NUMPAXFLOWN Number of passengers that took the flight 

SWISS_ETOT_TO_
ETOT 

ETOT predicted by SWISS (delta from ETFMS 
ETOT) 

DEPARTURE_GA
TE 

Geodesic longitudinal separation between origin 
and destination 

OCCUPATION 
Geodesic latitudinal separation between origin and 
destination 

SWISS_EOBT_TO
_EOBT 

EOBT predicted by SWISS (delta from ETFMS 
EOBT) 

SWISS_EOBT_TO
_SOBT 

EOBT predicted by SWISS (delta from ETFMS 
SOBT) 

CREW_CONNECT
ION_TIME_PREVI
OUS_FLIGHT_SC
HEDULED 

Time scheduled for the crew connection with the 
current flight 

SCDINPAX_G6 
Number of passengers with scheduled connection 
time of more than 60 min from other flights to the 
selected flight  
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B. Use case 2: ATM 2D route prediction  

As part of the strategic, pre-tactical and tactical demand and 
capacity processes, the airspace users are required to provide 
their flight plans as soon as possible to the Network Manager. In 
their flight plan, AUs must declare –among other aspects of the 
flight– the route (set of airspace 2D waypoints) and the flight 
level they intend to fly. These parameters can change at the time 
of operations due to different reasons (route availability, 
network congestion, weather constraints, and others). As in the 
ETOT case, the lack of predictability of the route and flight level 
of the traffic might generate capacity overloads and 
consequently lead to an unwanted increase of the capacity safety 
buffers required at many sectors and to more traffic regulations. 

This second AICHAIN case study aims at developing a ML 
prediction model to improve the predictability of the 2D route 
and flight levels well in advance before operations. This can help 
the NM to allocate the capacity resources and the traffic demand 
in an optimal way while minimising the number of restrictive 
network constraints (e.g. ATFM regulations).  

TABLE III.  NON-PRIVATE FEATURES DESCRIPTION FOR USE CASE 2 

Feature 
name 

Description 

Airport GDP 
Gross Domestic product of the Origin/Destination 
surroundings areas 

Airport 
population 

Population density of the Origin/Destination surroundings 
areas 

Airline TOW Measured Take-Off weight by the airline of each flight 

CAPE Used as a storm proxy 

Charges The charges paid for the current route for a given aircraft 

Connecting 
passengers 

Number of passengers that have a flight connection in the 
destination airport 

Daily flights Number of flights for each od pair and day 

Direct costs Sum of the fuel and charges costs 

DoY The day of year in which the flight takes place  

DoW The day of week of the flight codified accordingly 

Flight Time The ETOT hour of the flight 

Fuel cost 
(estimation) 

Estimation of the cost of fuel for each given route 

Humidity 
The relative humidity observed along the route, that is a 
requisite for thunderstorms to occur 

K-index 
Weather metric that approximates the probability of a 
thunderstorm to happen 

Latitude diff 
Geodesic latitudinal separation between origin and 
destination 

Longitude 
diff 

Geodesic longitudinal separation between origin and 
destination 

Market  share Airline’s flight share for each OD pair and day 

Military 
zones 

The route crosses a closed military zone, not use as a 
feature but to discard routes 

Regulations The duration of the regulation that affects the route 

Route length The length in kilometres of a given route 

Wind at 
origin/ 
destination 

Variable that measures how aligned and in what value 
local wind at the airport is 

Wind length 
Length of the route in kilometres adjusting the effect of 
the along wind 

TABLE IV.  PRIVATE FEATURES DESCRIPTION FOR USE CASE 2 

Feature 
name 

Description 

Airline TOW Measured Take-Off weight by the airline of each flight 

Connecting 
passengers 

Number of passengers that have a flight connection in the 
destination airport 

 

The proposed model is a two-step approach that models the 
prediction of the route to be flown as a binary classification ML 
problem. 

 The first step consists of a DBSCAN clustering that 
aggregates the routes of each OD pair into “relevant 
routes”, that is, a set of representative routes of all the 
ones observed for a given period. This way, the 
problem is to choose among representative routes 
which one will be flown (multi-class classification). 

 The second step develops a ML classifier that 
determines whether a given representative route is to 
be flown at each OD pair. To perform predictions, the 
features of each potential route are obtained by 
subtracting the observed features of the most flown 
route in the previous month to the observed features of 
each possible route.  

 
For this paper only the second step which develops the 

supervised ML model is relevant. The original model was 
developed in [19] and relies on NM’s data and public weather 
data sources to generate its features. The details of the baseline 
(non-augmented) version of the model used in this case study 
can be found in [20]. 

Table III and Table IV show the non-private and private 
features of the model developed for Use Case 2. A subset of 
features provided by an AU (SWISS) have been used as part of 
the augmented model. These features are: 

 Flight Take-Off Weight: the measured weight at take-off 
as measured by the AU. The actual weight of the aircraft 
can determine taking a more direct route (e.g. the flight 
is full and cannot delay other flights at destination). 

 Number of passengers with flight connections at 
destination: this is a good proxy indicator for the model 
to “learn” the importance of the cost of delay and 
connectivity constraints for that flight (e.g. a lot of people 
with connections might make the AU take a faster route). 

For further details on the case studies, the reader can refer to 
the deliverable D3.2 “AICHAIN Operational Value – Final 
Report” of the AICHAIN project (publicly available at the 
project webpage [4]).   

 

C. Machine learning algorithms used 

Both use cases have been developed and experimentally 
assessed with both neural networks (NN) and decision trees 
(DT) models. Due to the current prototype development state, 
the federated learning experiments were only executed with 
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neural networks. For the sake of simplicity, the results 
presented in this paper will combine results from the different 
experiments where the two types of models were used. All the 
details regarding the experiments conducted and their results 
can be found in the public deliverables of the project [4]. 

D. Dataset description 

To perform the experiments of each case study, the AICHAIN 
consortium had access to Network Manager data required to 
develop both case studies using regular ML. In addition to that, 
SWISS Air has prepared a dataset including some private 
features of their own flights that have been identified as relevant 
for the use cases.  
 
All the data available (both NM data and AU data) corresponds 
to the following areas and periods:  

 Case study 1 (ETOT prediction): all flights crossing 
Maastricht Upper Area Control Centre (MUAC) 
sectors from 27th June 2019 to 28th February 2020.  

 Case study 2 (2D route prediction): all flights 
connecting Switzerland and great London area airports 
from 27th June 2019 to 28th February 2020.  

It is worth noting that the dataset provided by SWISS has been 
shared with the project partners to bring the highest degree of 
control and transparency as possible to the experiments (see 
next section). However, under normal (non-research) 
operational conditions the AICHAIN solution would not need 
that the AUs share their data with anyone to train a model. 

E. Assessment framework and experimental methods 

The experiments presented in this paper aim at 
demonstrating the feasibility of the proposed federated approach 
and to generate quantitative evidence of the added value that the 
AU’s data may have for the proposed case studies.  

To this aim, the experimental method consists of the 
generation and benchmarking of three different scenarios. The 
scenarios differ from each other in the way the ML models were 
trained (dataset augmented or not, and federated training or not): 

 Baseline model (V0), a.k.a. bottom boundary 
performance scenario. In this case the machine 
learning model has been trained in a non-federated 
manner with the NM data only. For each use case 
under consideration, this model can be considered 
as equivalent to the machine learning models 
currently used by NM in operations. 

 Augmented model (V1), a.k.a. upper boundary 
performance scenario. The training of the machine 
learning model has been performed with  the  
features available to NM plus the private sensitive 
variables from the AU. The two datasets were 
merged before the training, thus expanding the 
number of features for the same samples available 
at the NM data. The model has not been trained 
following the federated learning approach, but with 
a single computer having full access to the 
augmented dataset. This experiment aimed at 

finding the value of the private datasets under ideal 
conditions, i.e., assuming that all the data (sharable 
and non-sharable) is available to train the model 
without the need for federating. The rest of the 
training conditions are the same as in V0. Thus, this 
scenario determines the upper boundary of model 
performance that can be achieved in each use case 
by exploiting the private data available.  

 Federated augmented model (V2), a.k.a. solution 
prototype performance scenario. As in the previous 
scenario, the federated model has been trained with 
the NM’s variables as well as the private AU’s 
variables, but through federated learning with 
private data distributed in users’ data silos. The 
training of the federated model has been done using 
the AICHAIN prototype. The performance of the 
federated model is expected to be equal or very 
close to the V1 ones.  

Figure 3 shows the general methodology for benchmarking 
the different scenarios. Each experiment consisted in comparing 
a reference scenario against the benchmark scenario. 

Since there has been private data only from one AU 
(SWISS), all data points in the federated experiments have been 
randomly split into two “synthetic AUs”, each one having 50% 
of the available flights. In the federated experiments, two 
independent nodes, yielded to two model updates at each step. 

 

IV. RESULTS OF THE EXPERIMENTS  

A. Use case 1: ETOT prediction  

Results of this use case are presented based on two different 
executed experiments: The first experiment was focused on 
assessing the private data value: both the baseline (V0) and 
augmented (V1) models were modelled with Decision Trees 
(LightGBM), with the purpose of proofing the value of private 
data. The second experiment was focused on assessing the 
technological feasibility of the federated learning approach. due 
to the current prototype development state, the federated 
learning model (V2) experiments were only executed with 
neural networks (further details can be found in the public 
deliverables of the project [4]). 

 

 

 
Figure 3. Methodology and setup for benchmarking scenarios/models 
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Figure 4. Learning curves of scenarios V0 and V1 for use case 1 

The available dataset contained around 5 M samples from 
1.1 M flights, and it was split in three different sets for the 
experiment: training set (70% of the samples), validation set 
(15%) and test set (15%). Each model have been trained using 
the training set and validated with the validation and test sets. 
Figure 4 shows the learning curves as a function of the training 
steps for the scenarios V0 (baseline) and V1 (augmented).  

Table V shows the results for the bottom and upper boundary 
scenarios in terms of average prediction absolute error (MAE) 
as a function of the prediction look-ahead time. The augmented 
scenario V1 is better in terms of predictability than the baseline 
V0, proving that the private data of SWISS has added value to 
the model and could increase the predictability in this particular 
case study. Note that the private data could improve the error 
mean more significantly for the prediction look-ahead times in 
the range between 30 and 120 minutes than for short or very long 
look-ahead times (i.e. less than 30 and more than 120 minutes).  

Table VI shows the aggregated statistical distribution 
description of the absolute error on average for the scenarios V0 
and V1. To complete the comparison, the figures obtained from 
the legacy system ETFMS (basic ETOT predictions without 
using machine learning models) are also shown. 

The following results can be inferred from the first experiment: 

 Average improvement with NM data only (scenario 
V0) with respect the ETFMS predictions: +11.4% 

 Improvement with NM+SWISS data (scenario V1) 
with respect the ETFMS predictions: +14.3% 

 Relative improvement (calculated with ((ETFMS-
V1)/(ETFMS-V0)-1): +25% 

 The improvement is observed in all the distribution 
(note: the slight increase in the second quartile of 
the V0 model with respect the ETFMS can be 
explained due to the presence of more “small 
errors” compared to the presence of “large errors”, 
relative to each of the distributions).  

 The mean value is notably higher than the median 
value (i.e. second quartile), which suggests the 
right-skewed distributions typical of ETOT errors. 

 The performance improvement when private data is 
introduced (V1 vs V0) is more noticeable in the 
prediction look-ahead times between 30 to 120 
minutes before flights departure.  

 
Figure 5. Learning curves of scenarios V1 and V2 for the second experiment of 
use case 1(with neural networks). Metric: root mean square error (RMSE). 

TABLE V.  ABSOLUTE AVERAGE ERROR OF THE PREDICTIONS ON THE 
TEST SET AT DIFFERENT PREDICTION LOOK-AHEAD-TIMES (IN MINUTES) 

Id (0, 30] (30, 60] (60, 90] (90, 120] (120, +) 
Baseline 
(V0) 

5.12 7.87 9.16 9.47 11.19 

Augmented 
(V1) 

5.06 7.70 8.94 9.19 11.04 

TABLE VI.  ABSOLUTE AVERAGE ERROR OF THE PREDICTIONS ON THE 
TEST SET (IN MINUTES) 

Statistic ETFMS  
(legacy system) 

Baseline 
(V0) 

Augmented 
(V1) 

Mean 10.5 9.3 9.0 

Std deviation 15.7 13.0 13.0 

1rst quartile 2.9 2.7 2.6 

2on quartile 6.0 6.1 5.8 

3rd quartile 12.0 11.4 10.8 

 

Regarding the second experiment, Figure 5 shows the root 
mean square error (RMSE) evolution for both the augmented 
and the federated augmented scenarios, once the prototype was 
ready and the use-case modelled with Neural Networks. As 
expected, the federated experiments led to very similar results 
compared to the non-federated augmented scenario V1, proving 
not only the feasibility of the federated approach, but also the 
capability of the solution to extract all the value from the private 
datasets. Note that in the figure the horizontal axis has a different 
scale at each chart shown because the federated training cycles 
works differently than with classical ML approach. Also note 
that RMSE metric was used in this experiment and cannot be 
directly compared with the MAE metric of the first experiment.  

It is also interesting to analyse the importance of the features 
on the predictability performance of the model. Figure 6 shows 
the importance feature analysis for the upper boundary case 
(NM+SWISS data). In the figure the private features provided 
by SWISS have been highlighted in red. It can be observed that 
some of these private features contributed significantly to the 
increase of predictability of the take-off time, e.g.: the number 
of passengers booked and already onboarded, the runway 
assigned, the own ETOT predictions made by SWISS, the 
assigned gate, the number of passengers with connection, and 
the time of connection of the previous flight. Other private 
features used can be found in the project deliverable D3.2 [4]. 
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Figure 6. Feature importance analysis (NM + SWISS data) 

 

B. ATM 2D route prediction case study 

The available dataset was split into two subsets to facilitate 
the training and validation of all models according to time: 
training set (85% of the samples), and validation set (15%). The 
performance metric used in this case study is the accuracy of 
route selection, that is, the amount of route predictions that were 
correctly assigned to their afterwards flown route.  

Table VII summarises the accuracy achieved by each model 
scenarios V0, V1 and V2 assessed using the validation set in the 
2D route prediction case study. In addition, to set a reference 
performance similar to the legacy system of the previous case 
study, a simple model based on heuristics has been defined: the 
most flown route (MF), which makes a prediction based on the 
route of each OD pair that was the most flown route in the 
previous month from the prediction time.  

These results indicate that the simplified heuristic of the 
most flown route can already provide a relatively high accuracy 
of 87.6%. This is due to the fact that AUs tend to fly the same 
route pretty often, which simplifies the problem of prediction. 
Regardless, the application of machine learning models with the 
baseline scenario V0 in which only NM data was used could 
bring a significant improvement with respect to the heuristic of 
the most flown route of around 8%. It is worth noting that the 
accuracy reached was actually very high in V0, i.e. 95%. 
Nonetheless, the results of the augmented V1 scenario show that 
after adding just two extra private AU’s features to the model, 
the performance could still increase over the baseline case V0, 

with a relative improvement of about 4%. The federation of the 
experiment, V2, again shows similar results as in V1, perhaps 
showing slight less improvement, but the accuracy achieved is 
still above the obtained without the AU’s dataset. 

Figure 7 shows the feature importance analysis of the variables 
using the SHAP values approach [21]. As observed, there are 
several variables that contribute significantly to the model 
among which both TOW and number of connections are 
included. Moreover, it is worth noting the fuel cost variable. 
The fuel cost variable used in the model is an approximation to 
the actual cost of fuel for the airline based on average fuel 
prices. The reason for not using actual airline fuel prices is 
because it was found too sensitive information to share it with 
the project consortium in the context of the research project, 
even if the dataset was protected under strict non-disclosure 
agreements. Due to the importance that this private feature has 
in this use case, it is expected that the model performance could 
still be improved significanly more if the actual value of such 
feature could be exploited directly in the SWISS premises 
through federated learning. 
 

 

 

Figure 7. Feature importance analysis of the UC2 (SWISS + NM data) 
 

 

TABLE VII.  RESULTS OF 2D ROUTE PREDICTION (ACCURACY) 

Id Test 
description 

Federated 
AU 

features 
Accuracy 

Most flown  
(MF) 

Non ML 
model 

baseline 
- - 0.876 

Baseline 
(V0) 

No AU 
properties 

No No 0.95 

Augmented 
(V1) 

AU 
properties 

No Yes 0.954 

Federated 
(V2) 

Federated 
model with 

AU 
properties 

Yes Yes 0.953 
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V. CONCLUSIONS  

The AICHAIN solution enables the privacy-preserving 
exploitation of large private datasets from different stakeholders 
to enrich operational machine learning applications. This is 
achieved through privacy-preserving federated machine 
learning, where the training and serving of the federated models 
can be done at the data owners’ facilities in a cyber-secured and 
trustworthy manner without sharing any data. Thus, private data 
owners can remain in full control of their dataset’s privacy 

From the experiments conducted with the two ATM use 
cases, the following conclusions can be extracted: 

1. The exploitation of private data can improve ML models 
performance.  

2. The performance improvement of the models augmented 
with private data may differ from use case to use case. It is 
expected that private data will always yield model performance 
improvements, which can be of different orders of magnitude 
depending on several factors (e.g. the problem complexity, the 
number of private features needed by the model, the importance 
of the private features in the model, to name a few). 

3. The features contributing most significantly to a model 
can be private/confidential features. This is the case of UC2, 
where the fuel cost has been the most important feature of the 
model but it had to be approximated because, due to its high 
sensitivity for the air transport industry competition model, this 
feature was not available in the experiments. In those cases 
where these significant private features cannot be easily 
approximated, the federated learning approach can enable 
significant model performance improvements.  

A limitation in the shown experiments is the private data 
used was provided by only one airline (i.e. SWISS) and for a 
reduced sample of flights (scenarios limited in space  and time). 
It is expected that the addition of more data from more airspace 
users will lead to additional significant model improvements. 
Future work should include more realistic experiments with a 
larger number of airspace users contributing with their private 
datasets to the federated alliance. Additional use cases can be 
also explored in different domains of ATM and air transport, 
potentiallyt including U-Space and multimodality. 
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