System of Systems Engineering for the Airport Slot Allocation Problem

Mario Ramírez Ferrero
mario@inisoc.org

Alberto Araúzo Araúzo
aráuzo@eii.uva.es

Félix Villafáñez Cardeñoso
villafafelix@yahoo.es

Adolfo López Paredes
adolfo@inisoc.org

Authors have been supported by ACCESS project (E.02.29) and University of Valladolid. Special thanks to ACCESS partners Nommon, ALG and University of Trieste, and other INSISOC colleagues.

This work is co-financed by EUROCONTROL acting on behalf of the SESAR Joint Undertaking (the SJU) and the EUROPEAN UNION as part of Work Package E in the SESAR Programme. Opinions expressed in this work reflect the authors’ views only and EUROCONTROL and/or the SJU shall not be considered liable for them or for any use that may be made of the information contained herein.
SoS Case Study
• EU civil aviation

Tackle an engineering issue for this SoS
• (Multi-)Airport Slot Allocation

SoSE socio-economic approach
• Auctions, Markets
Motivation: airport capacity constraints

Airport categories
- Level 1 – not congested / not coordinated
- Level 2 – congested in periods / schedule facilitated
- Level 3 – congested / coordinated

Slot
- Right for using airport resources to take-off or land during certain period of time

Allocation Problem

Administrative allocation
- EU regulation 95/93 + amendments
- Primary allocation:
 - Historical rights + use it or lose it
- Secondary trading:
 - Implicit/explicit economic factors
Current Slot allocation

ADVANTAGES
• Reduced costs
• Plan long-term operations
• It works!

DRAWBACKS
• Does not guarantee maximum slot ‘exploitation’
• High relevance of historical rights
• Slot value is unknown

What if we study the problem from a SoSE perspective?
Scope and Roadmap

Multi-Airport Slot Allocation from a SoSE perspective

- SoS definition
- Design of mechanisms
- Modelling & Simulation
- Policy assessment
- User-friendly tools
Description of the SoS
SoS description: Constituent Systems

<table>
<thead>
<tr>
<th>Regulators</th>
<th>Coordinators</th>
<th>Airlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>IATA</td>
<td>Airport coordinators</td>
<td>Network</td>
</tr>
<tr>
<td>European Commission</td>
<td>Coordination committees</td>
<td>Low cost</td>
</tr>
<tr>
<td>European Parliament</td>
<td></td>
<td>Cargo</td>
</tr>
<tr>
<td>European Council</td>
<td></td>
<td>Regional</td>
</tr>
<tr>
<td>Member States</td>
<td></td>
<td>Charter</td>
</tr>
</tbody>
</table>

- **Regulators**
 - IATA
 - European Commission
 - European Parliament
 - European Council
 - Member States

- **Coordinators**
 - Airport coordinators
 - Coordination committees

- **Airlines**
 - Network
 - Low cost
 - Cargo
 - Regional
 - Charter

- **Airport operators**
 - Coordinated
 - Schedule facilitated

- **Final users**
 - Passengers

- **Inf. & Comm. Systems**
 - ICT platforms
 - Conferences & meetings
 - ‘Informal communications’
SoS for Primary Allocation (single airport)

Scenario
- One airport
- Several airlines request a set of slots

Observations
- Slots might be interrelated or not
- Single airport coordination authority
SoS for Primary Allocation (multiple airports)

Scenario
- Several airports and airlines
- Airlines request slots at several airports
 - Currently not at the same time
 - ACCESS will study simultaneous allocation

Observations
- Slots at different airports are interrelated (departure + arrival) → Combinatorial Allocation Problem
- Different airport coordinators
- Uncertainty increases
SoS for Secondary Allocation (multiple airports)

Scenario
- Several airports and airlines
- Slots are already assigned
- Some airlines are willing to trade
- Central coordinator?

Observations
- Airlines may both request/offer slots at the same time
- Monetary / non-monetary exchanges
- Slots ownership information
SoS for Secondary Allocation (multiple airports)

Scenario
- Several airports and airlines
- Slots are already assigned
- Some airlines are willing to trade
- Central coordinator?

Observations
- Airlines may both request/offer slots at the same time
- Monetary / non-monetary exchanges
- Slots ownership information
SoSE Methodology
SoS Engineering Methodology

Are AUCTIONS suitable for SoSE?

Combinatorial Allocation Problem (CAP) → Analogy CAPs ↔ Markets → Auction Markets

- Problem fragmentation
- Pricing mechanisms
Auctions for SoSE

Iterative Combinatorial Price-setting Auctions

- Price-setting: provide prices for slots
- Combinatorial: allow airlines to bid for combinations of slots
- Iterative: rounds improve the results

Decentralisation

- The auctioneer only modifies prices to balance supply/demand
- Split logic: buyer and sellers solve different problems
- Split complexity: each particular problem is simpler
- Information privacy (only prices and requests are public)
SoS Engineering Methodology

Combinatorial Allocation Problem (CAP)

Analogy CAPs ↔ Markets

Auction Markets
- Problem fragmentation
- Pricing mechanisms

Experimental Economics
- Simulation

Market Experiment design
- \(I \times E \times A \)

Auction Engineering
- Price-setting auctions
- Iterative auctions
- Combinatorial auctions
Auction process
- Auctioneer sets initial prices
- Airlines request slots depending on price
- Auctioneer matches supply and demand and modifies prices for next round

Auction ends when...
- Round limit
- Prices converge
- Capacity not over-demanded
- Etc.
Multi-Airport Primary Allocation

Complexity increases
- Combinatorial requests
- Multi-airport capacity restriction analysis
- Feasibility of solutions

SoS complexity impacts on CS complexity
Secondary Allocation

Slight changes

- Airlines are buyers and sellers
- Market coordinator?
- Public information may change → CS may change their behaviour
Impact and Conclusions
Some expected impacts of Auctions

Higher efficiency in the short run

Rejection: lack of willingness to pay

More intelligence in each CS

Explicit economic factors → Uncertainty

- Costs
- Revenues

Proof of slot value

Signals for policy makers
Conclusions

| SoS paradigm suits Airport Slot Allocation | • Conceptualisation
| • Modelling
| • Communication requirements |
| Auction Markets are suitable for SoSE | • Negotiation capabilities for the SoS
| • Implicit socio-economics factors become explicit
| • Provide resilience, flexibility and self-reconfiguration |
| High impact on SoS/CS | • Benefits in the short run
| • Uncertainty and rejection |
| Auction Engineering + Experimental Economics | • Explore uncertainty and emergent behaviour
| • Provide SoS testing, validation and testing |