

Working Paper 5

ACCESS Simulation and Analysis Toolset

November 2015

Simulation and Analysis Toolset

© ACCESS Consortium Page 2 of 85

Authors

Nommon Solutions and Technologies

Ignacio Rodríguez

David Toribio

University of Valladolid

Mario Ramírez

Advanced Logistics Group, Indra-Europraxis

Núria Alsina

Laia Garrigó

Università degli Studi di Trieste

Tatjana Bolic

Lorenzo Castelli

This work is co-financed by EUROCONTROL acting on behalf of the SESAR Joint Undertaking (the SJU)
and the European Union as part of Work Package E in the SESAR Programme. Opinions expressed in
this work reflect the authorsΩ views only and EUROCONTROL and/or the SJU shall not be considered
liable for them or for any use that may be made of the information contained herein.

Simulation and Analysis Toolset

© ACCESS Consortium Page 3 of 85

Table of contents

EXECUTIVE SUMMARY .. 4

1. INTRODUCTION .. 5

1.1 SCOPE AND OBJECTIVES ... 5

1.2 STRUCTURE OF THE DOCUMENT .. 5

1.3 GLOSSARY OF TERMS ... 6

1.4 ACRONYMS AND ABBREVIATIONS ... 9

2. FUNCTIONAL DESIGN .. 11

2.1 GLOBAL OVERVIEW ... 11

2.2 STATIC STRUCTURES .. 12

2.2.1 Data repository ... 12

2.2.2 User interface .. 12

2.2.3 Simulation engine ... 13

2.3 DYNAMIC MODEL .. 15

3. TECHNICAL DESIGN ... 19

3.1 TECHNOLOGY STACK .. 19

3.1.1 Back-end technologies .. 20

3.1.2 Front-end technologies ... 21

3.2 DATA REPOSITORY .. 21

3.2.1 User interface data structure .. 22

3.2.2 Simulation engine data structure .. 32

3.3 SOFTWARE MODULES .. 39

3.3.1 User interface .. 39

3.3.2 Simulation engine ... 52

4. OPERATION MANUALS ... 57

4.1 DEPLOYMENT MANUAL .. 57

4.2 USER MANUAL ... 65

4.2.1 Configuration area .. 66

4.2.2 Experimentation area ... 73

APPENDIX A. COMPARATIVE ANALYSIS OF AGENT-BASED MODELLING FRAMEWORKS 76

A.1 NETLOGO .. 76

A.2 REPAST ... 76

A.3 MASON ... 77

A.4 DETAILED COMPARISON OF FRAMEWORKS .. 77

A.5 ADDITIONAL INFORMATION .. 82

Simulation and Analysis Toolset

© ACCESS Consortium Page 4 of 85

Executive summary

One of the objectives of the ACCESS project is the development of a software platform implementing the
theoretical framework of the project and allowing the testing of a variety of slot allocation mechanisms in
different scenarios. This document provides a description of the ACCESS simulation platform from different
perspectives, from the design level to the use of the actual software by the final users.

The ACCESS simulation platform is a software prototype which has been broken down into several main
modules/components:

¶ A database with all the input data needed for simulation (airline data, airport data, demand data,
scenarios configuration, additional parameters, etc.) and the output data generated after its execution.

¶ A graphical user interface that will allow basic users to run pre-defined scenarios and visualise the
results, and administrator users to insert new elements in the database (airlines, airports, scenarios,
etc.).

¶ A simulation engine implementing the mathematical models specified in the project, which is the core of
the toolset.

The document presents the arrangement of these main modules, analysing their internal elements and
structure from a functional point of view. An additional analysis has been conducted to provide a description
of how these elements will interact for the accomplishment of the specified behaviour in the software
implementation.

An overview of the technologies which have been selected for the implementation of the platform is
presented, followed by a technical description of the components. All the tables and columns of the database
are detailed as well as the classes and packages that form the software architecture.

The last section the document provides two guides about the developed software: a deployment manual
explaining the installation of the software on a server architecture, and a manual explaining how to use the
simulation platform through the user interface.

Simulation and Analysis Toolset

© ACCESS Consortium Page 5 of 85

1. Introduction

1.1 Scope and objectives

The general purpose of this document is to provide a description of the software that implements the
simulation platform of the ACCESS project.

The document is expected to meet a number of lower level objectives:

1. present the main modules of the simulation platform and its internal components;

2. analyse how the main modules interact with each other to achieve the expected behaviour;

3. describe how the data has been structured in the data repository of the platform;

4. present the different packages and classes that compose the software;

5. provide a manual for the deployment and use of the platform by the final users

1.2 Structure of the document

The document is structured as follows:

¶ Section 1 defines the main concepts and terms used throughout the document.

¶ Section 2 presents the functional design of the ACCESS simulation platform.

¶ Section 3 describes the technical specification that has been produced for the implementation of the
ACCESS simulation platform.

¶ Section 4 provides the documentation that will allow IT professionals to perform the deployment of the
ACCESS simulation platform, and the final users to efficiently use it.

Simulation and Analysis Toolset

© ACCESS Consortium Page 6 of 85

1.3 Glossary of terms

Concept or term Definition

Administrative Slot
Allocation

Slot allocation mechanism based on administrative rules, not including market or
other types of mechanisms. The current slot allocation process, based on the EU
regulation and IATA slot guidelines, is a particular case of administrative slot
assignment.

Agent An autonomous discrete entity with its own goals and behaviour, generally used
to represent a certain stakeholder in a model.
Autonomy means that it is capable to adapt and modify its own behaviour, which
is guided by an objective function and a set of decision rules or algorithms of
different complexity.

Agent-Based Model A class of computational model for simulating the actions and interactions of
autonomous agents (both individual and collective entities such as organisations
or groups) with a view to assessing their effects on the system as a whole. It
consists of: a set of agents, a set of agent relationships, and a framework for
simulating their behaviours and interactions.

Agent-Based
Modelling and
Simulation

A class of computational simulation to run Agent-Based Models. It is based on
local interaction among agents, and no central authority exists to operate the
system or control its evolution or change of state.

Auction Market A market where products, services or rights are bought and sold through a formal
bidding process.

Combinatorial
Auction

A type of smart market in which participants can place bids on combinations of
ŘƛǎŎǊŜǘŜ ƛǘŜƳǎΣ ƻǊ άǇŀŎƪŀƎŜǎέΣ ǊŀǘƘŜǊ ǘƘŀƴ ƛƴŘƛǾƛŘǳŀƭ ƛǘŜƳǎ ƻǊ Ŏƻƴǘƛƴǳous
quantities.

Coordination
Interval (or
Coordination Time
Interval)

Period of time comprising the valid time for a slot to be used at certain airport. It
is given different names across literature, such as 'coordination interval', 'time
interval' or 'slot width'. Several slots may be allocated within the same
coordination interval. The coordination interval has different duration at each
airport (constant along the whole day), usually between 5 and 20 minutes (and up
to 60 minutes in some cases).

Coordination
Parameters

This set encompasses capacity, connecting times, night curfews, etc. They are
specified for each airport before the season starts.

Exogenous Variable Variables that affect a model without being affected by it. They are used for
setting arbitrary external conditions. Useful models require strict delineation
regarding what is included and excluded from the model, as typically not all
relevant subsystems can be represented. We therefore define parts of the system
that are unaffected by other parts within the system. These components, which
are relevant but unaffected by the model, are taken into account as exogenous
variables.
(See also Variable)

Simulation and Analysis Toolset

© ACCESS Consortium Page 7 of 85

Concept or term Definition

Experiment A set of scenarios representing several interrelated case studies (e.g., simulation
of a certain slot allocation mechanism for a variety of scenarios).

Grandfather Rights Grandfather right is a historical precedence for a series of slots an airline earns if it
operates the said series of slots at least 80% of the time in the previous equivalent
season.

Market Systems, institutions, procedures, social relations and infrastructures whereby
parties engage in exchange.

Market Equilibrium A condition where a market price is established through competition such that the
amount of goods or services sought by buyers is equal to the amount of goods or
services produced by sellers. The equilibrium price is often called the competitive
price or market clearing price and will tend not to change unless demand or supply
changes.

Model A simplified description of a complex entity or process, often in mathematical
terms, that helps conceptualise and analyse the problem.

Outcome Indicator Indicator that measures progress towards policy objectives (i.e. the variables one
wants to optimise in the system).
(See also Intermediate Indicator)

Parameter A variable that is assigned with a value and kept constant along a simulation.
(See also Variable)

Performance Area Broad focus area encompassing one or several goals or objectives.

Performance
Framework

Set of performance areas and indicators that guide the evaluation of a particular
slot allocation mechanism.
(See also Performance Area and Performance Indicator)

Performance
Indicator

Means of summarising the current position and the direction and rate of change
of progress towards a particular goal. The use of indicators for the control and
monitoring of processes helps evaluating and monitoring developments; focuses
the discussion with stakeholders; promotes the idea of integrated action;
demonstrates progress towards goals and objectives; and ultimately supports
decision making.

Price-Setting
Auction

A combinatorial iterative auction where the auctioneer sets and modifies the
prices of the items as a function of demand and supply.
(See also Auction Market and Combinatorial Auction)

Primary Slot
Allocation (or
Primary Slot
Assignment)

The first stage of slot allocation process, during which most of the slots for the
scheduled operations are allocated. Currently it is usually based on IATA's World
Slot Guidance.
(See also Secondary Slot Allocation)

Processing Time Measure of time related to the real-life time which is needed to run a simulation.
It depends on the ABM software implementation and the hardware used to run it.
(See also Simulated Time)

Simulation and Analysis Toolset

© ACCESS Consortium Page 8 of 85

Concept or term Definition

Property file Files used to store the configurable parameters of an application. They can also be
used for storing strings for internationalisation. Each parameter is stored as a pair
of strings (one storing the name of the parameter and the other storing the value
of the parameter) separated by an equal sign (=).

Replica Each execution of the same simulation scenario necessary for statistical analysis of
stochastic simulations.

Rolling Capacity A time-dependant airport capacity measure that represents a maximum number
of arrival/departure/total slots available over a certain number of coordination
time intervals. For instance, an airport may have 2 arrival slots available for each
coordination interval, but allow only 5 arrivals as much for 3 consecutive
coordination intervals (instead of 6).

Rolling Capacity
Interval

The number of coordination time intervals that comprise the definition of certain
rolling capacity constraint.
(See also Rolling Capacity and Coordination Time Interval)

Scenario A particular instance of the set of parameters of the model. The scenario space is
composed by all possible combinations of those parameters that are relevant to,
but exogenous to the model.
(See also Parameter)

Secondary Slot
Allocation (or
Secondary Slot
Assignment)

Second stage of the slot allocation process, where the airlines exchange slots
subject to the approval of the coordinator. This is currently done in four different
modalities: slot exchange without monetary compensation, slot transfers (one
airline transfers the slots to another: just a transfer, without exchange), slot
exchange with monetary compensation, and slot buy-sell (where this is allowed).
(See also Primary Slot Allocation)

Simulated Time Measure of time related to the virtual time elapsed in a simulation. Sometimes it
applies to the virtual time horizon of a simulation. For instance, with some
seconds of computer simulation in the real-life we might be able to virtually
represent the evolution of a model over several years of simulated time.
(See also Processing Time)

Simulation Operation that runs certain programmed software models on computers, trying to
reproduce a real-world situation over time.

Simulation time
step

The time granularity of the simulated time. It is used to define the frequency of
events during the simulation.

Slot Permission given by a coordinator to use the full range of airport infrastructure
necessary to operate an air service at a coordinated airport on a specific date and
time for the purpose of landing or take-off.

Slot Allocation
Mechanism

Mechanism or scheme used to allocate slots.

Slot Trading Exchange of slots with monetary compensation, or simple buy and sell of slots
(where this is allowed).

Simulation and Analysis Toolset

© ACCESS Consortium Page 9 of 85

Concept or term Definition

Stakeholder A person, group or organisation that has interest or concern in slot allocation.

Turnaround Period beginning when a flight arrives at an airport and ending when the aircraft
takes off again. During turnaround, a defined series of actions has to be
undertaken, involving both airline and airport operations as well as other parties
such as ground handlers.

Variable A quantity that varies within a simulation, as a result of its execution.
(See also Parameter)

Table 1. Glossary of terms

1.4 Acronyms and abbreviations

Term Definition

3NF Third Normal Form

ABM Agent-Based Model

ACCESS Application of Agent-Based Computational Economics to Strategic Slot Allocation

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

ASF Apache Software Foundation

BHDOC Average Block Hour Direct Operating Cost

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

CSV Comma Separated Value

DOM Document Object Model

FIFO First In First Out

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hyper-Text Transfer Protocol

IDE Integrated Development Environment

JDK Java Development Kit

JEE Java Enterprise Edition

JPA Java Persistence API

JSE Java Standard Edition

JSON JavaScript Object Notation

JSP Java Server Pages

JVM Java Virtual Machine

Simulation and Analysis Toolset

© ACCESS Consortium Page 10 of 85

Term Definition

ORM Object/Relational Mapping

RDBMS Relational Database Management System

REST Representational State Transfer

REST Representational State Transfer

SaaS Software as a Service

SPA Single Page Application

SQL Structured Query Language

UTM Universal Transverse Mercator

Table 2. Acronyms and abbreviations

Simulation and Analysis Toolset

© ACCESS Consortium Page 11 of 85

2. Functional design

2.1 Global overview

The ACCESS project aims to develop and deliver a simulation platform prototype to allow the evaluation of
several alternative airport slot allocation mechanisms in different scenarios. Within this general objective, this
toolset pursues several particular goals:

¶ Allow the scientific study and analysis of the allocation mechanisms, their parameters and
configurations.

¶ Support the interaction between realistic models of the main stakeholders: airline companies, airports,
slot allocation coordinators, and passengers.

¶ Allow the representation of different realistic scenarios corresponding to real world situations,
characterised by sets of exogenous factors that may have significant impact on airport slot allocation
and therefore on the mechanisms supporting this process.

¶ Provide regulators and policy makers with a tool that facilitates the understanding of how different
allocation mechanisms perform according to relevant Key Performance Indicators.

¶ Provide a database that can be used for further studies.

The design of the ACCESS simulation platform consists of three main modules/components:

¶ A data repository containing all the input data needed for the simulations (airline characterisations,
airports, demand data, scenarios configurations, additional parameters, etc.) and the output data
generated after their execution.

¶ A graphical user interface that allows basic users to run pre-defined scenarios and visualise the results,
and administrator users to insert new elements in the database (airlines, airports, scenarios, etc.). The
user interface has been implemented using web technologies to enable user interaction without the
need for any specific technical knowledge.

¶ A simulation engine implementing the agent-based model developed in the project. The simulation
engine is the core of this toolset, aiming at reproducing a realistic yet simplified representation of the
slot allocation problem. This representation involves the following phases: (i) primary allocation, carried
out before the beginning of the season; (ii) secondary allocation before the beginning of the season; (iii)
secondary allocation during the season.

The specification of the requirements of the simulation framework prototype is documented in the Working
Paper 4. ACCESS Simulation Framework Specification. The following sections rely on that specification to delve
into the analysis of the platform as a whole and of the different modules in which it is divided for
implementation purposes. This process, as the entire system development lifecycle of the prototype, has been
conducted following the principles of:

¶ Scientific accuracy. The set of experiments and scenarios will produce sets of output data that will be
statistically analysed. The output data will be stored so it can be re-analysed in the future if necessary.

¶ Modularity. ACCESS may be the starting point of a set of more complex studies and models. The
software architecture will facilitate the extension and integration of new models with the existing ones.

¶ Scalability. Due to the scope and time limitation of ACCESS project, it is expected that only relatively
simple yet realistic scenarios with few airlines and airports can be simulated. The simulation platform
will be developed so that bigger realistic scenarios can also be simulated.

¶ Transparency. The graphical user interface will facilitate the interaction with the tool, not requiring the
user to have certain technical skills that are usually necessary for scientific simulation.

¶ Openness and standardisation. Open and standard architectures, data formats and software platforms
are used.

Simulation and Analysis Toolset

© ACCESS Consortium Page 12 of 85

2.2 Static structures

This section describes the components of the ACCESS simulation platform and its internal elements at a
functional level, showing the key functionalities that will be included in the final product of the software
development process.

2.2.1 Data repository

The module responsible for data persistence is a central data repository that will serve to: (i) preserve the data
describing the different stakeholders of the slot allocation process (airlines, airports, slot allocation
coordinators, etc.) as well as external factors and common configurations; (ii) maintain the results of the
experiments that will be conducted in the platform; (iii) serve as an indirect communication mechanism
between the simulation engine and the user interface.

The data repository has been implemented using an existing database management solution. The chosen
solution provides standardised development interfaces in order not to influence the selection of the
development technology that will be used in the rest of the modules of the prototype.

Following the openness principle, open source solutions have been preferred versus privatives ones. The
chosen solution provides high efficiency in memory management and access to the data set. Also the solution
will enable the scalability of the prototype. For this purpose, the use of clustering techniques and the support
of different computation platforms have been considered.

Figure 1. Architecture of the simulation platform

2.2.2 User interface

The user interface will be the link between the users and the data repository, enabling the interaction with the
simulation engine. The interface has been implemented as a web application following a Software as a Service
(SaaS) delivery model. Consequently, the interface will be accessible from anywhere and from a long range of
devices, also making the maintenance process transparent to the users as the most updated version of the
platform will always be provided to them.

The components of the user interface are structured following the Model-View-Controller (MVC) architectural
pattern to isolate the responsibilities of each component and create clear interfaces between them so as to
make it possible a faster maintenance and allow extensibility. The MVC pattern divides the architecture in
three key components:

Simulation and Analysis Toolset

© ACCESS Consortium Page 13 of 85

¶ Model. The Model component is responsible for providing a common interface to the data stored in the
repository, implementing a semi-automatic recovery and storage of data.

¶ View. The View component is responsible for the generation of the elements of the user interface that
will be provided to the web browser.

¶ Controller. It is the component responsible for the validation of the structure of the messages and their
adequate routing. The general guidelines of the MVC pattern specify that this component shall be
responsible for the execution of the actual operations of the application too, but in the case of this
prototype the algorithms have been extracted from this component and implemented into the Service
component to obtain a more decoupled architecture.

Additionally, the web application needs other components to support its operations:

¶ Servlet Dispatcher. It is a part of the server environment that supports the application providing the
main interface with the network. This component has been customised to address the authentication
and authorisation needs of the simulation platform.

¶ Message. This component implements the formatted messages and the validation of the
communications exchanged between the client and server parts of the user interface.

¶ Service. This is the core component of the architecture providing the implementation of the algorithms
that enable the CRUD operations of the platform.

¶ Repository. This component implements the actual interaction with the data repository.

The components of the user interface will be executed in an application server. The application server typically
collaborates with an external web server which in this case will act just as a gateway making no changes in the
contents provided by the application. The elements generated by the View component are transmitted
through these serverǎ ŀƴŘ ǘƘŜ ƴŜǘǿƻǊƪ ǘƻ ǘƘŜ ǳǎŜǊΩǎ ǿŜō ōǊƻǿǎŜǊΣ ǿƘŜǊŜ ƛǘ ǿƛƭƭ ōŜ ŜȄŜŎǳǘŜŘ ǘƻ ǊŜƴŘŜǊ ǘƘŜ
visual aspect of the simulation platform.

The front-end and back-end components must be constantly communicated to enable the right use of the
application. In order to implement an asynchronous communication mechanism (i.e., without the need to
reload the interface in the web browser after every action) and provide an enhanced interoperation with third
ǇŀǊǘƛŜǎΩ ǎŜǊǾƛŎŜǎΣ ǘƘŜ ōŀŎƪ-end of the application will provide a REST web services API. This is currently the
most common API mechanism to enable the integration of miscellaneous services on the Internet.

The application server shall accomplish the same requirements of scalability and multiplatform availability
required for the data repository. Also it will support standard technologies for the development of the user
interface. In this sense, open source frameworks have been considered as long as possible.

2.2.3 Simulation engine

The simulation engine will be the third main component of the simulation platform. It will be constructed
using agent-based modelling techniques which are related, but distinct from, the concept of multi-agent
systems or multi-agent simulation in that the goal of agent-based models is to search for explanatory insight
into the collective behaviour of agents obeying simple rules, rather than in designing agents or solving specific
practical or engineering problems.

The time granularity selected is one month. A significant day of the season will be used to represent the
situation of the whole season (the most congested day, a regular day, etc.). The environment will allow the
simulation of a temporal horizon of up to 20 years, long enough to replicate several primary and secondary
allocations and analyse long-term effects and consequences of different mechanisms and configurations.

The central element of the simulation engine is the Scheduler. This element supports the operation logic
during the execution of the simulations. Specifically, the responsibilities of this component are to: (i) retrieve
the information needed for the simulation execution from the data repository, (ii) initialise the agents

Simulation and Analysis Toolset

© ACCESS Consortium Page 14 of 85

participating in the simulation, (ii) coordinate the execution loop, (iv) manage the flows of information
between the agents, and (v) consolidate the information and store it in the data repository for later analysis.
For accessing to the data repository, this component will take advantage of an equivalent mechanism to the
one used by the user interface. The noticeable difference is that it will be retrieving or adding information to
different entities of the data repository.

The Scheduler will be responsible for asking the agents to perform their calculations during the execution of
the simulation. It will involve four types of agents in each simulation:

¶ Airport agent

¶ Airline agent

¶ Slot allocation coordinator agent

¶ Passenger agent

Whereas every simulation will involve one instance of the slot allocation coordinator agent and the passenger
agent, the number of airline agents and airport agents will depend on the scenario definition.

There will be an additional component that will provide the values of the exogenous variables in the
simulation. This component will be similar to an agent providing information at concrete stages of the
simulation but with no utility function defined, hence no interest in the development of the process. The
exogenous variables will consist of the fuel price and the numbers of passengers willing to travel between each
pair of the airports belonging to the scenario, both variables calculated at each time step of the process.

The behaviour of the different agents has been described in in Working Paper 4. ACCESS Simulation
Framework Specification. However, the design work has identified alternative implementations that are
ŜȄǇŜŎǘŜŘ ǘƻ ƛƳǇǊƻǾŜ ǘƘŜ ǊŜŀƭƛǎƳ ƻŦ ǘƘŜ ŀƎŜƴǘǎΩ ōŜƘŀǾƛƻǳǊΦ ¢ƘŜǎŜ ŀƭǘŜǊƴŀǘƛǾŜ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴǎ ŀǊŜ ŘŜǎŎǊƛōŜŘ
below.

Passenger agent

Two types of passengers have been defined: (i) leisure passengers, which are indifferent to the hour in which
the flights are scheduled; and (ii) business passengers, which are sensitive to departure and arrival times. The
utility function of the business passenger has two peaks, one in the morning and one in the evening.

The passenger agent is rŜǎǇƻƴǎƛōƭŜ ŦƻǊ ǘƘŜ ŜƳǳƭŀǘƛƻƴ ƻŦ ǘƘŜ ǘǊŀǾŜƭƭŜǊǎΩ ōŜƘŀǾƛƻǳǊ ǊŜƎŀǊŘƛƴƎ ǘƘŜ ǎŜƭŜŎǘƛƻƴ ƻŦ ǘƘŜ
flights offered by the airlines. To provide intelligence to the selection behaviour, the following algorithm has
been implemented:

1. Given a concrete offer of flights between all the airports that form the scenario, the agent generates the
complete set of feasible routes from the origin to the destination.

2. It assigns to each type of passenger the utility that each route would provide (considering the utility
function of each passenger type).

3. Routes that provide negative or zero values are discarded.
4. Demand is assigned to the possible routes using a Multinomial Logit (MNL) model:

ὖὶ ȿ Ὓ
Ὡ

В Ὡ

where Ur stands for final utility perceived by the passenger travelling on the route r.
5. Once a flight has no more available seats, the routes to which it belongs are discarded and a new

assignment (step 4) is done with the remaining passengers.
6. This process is repeated for each pair of origin destination airports of the scenario.

Simulation and Analysis Toolset

© ACCESS Consortium Page 15 of 85

Exogenous variables

The ACCESS simulation platform contemplates the study of the influence of two external variables to the
simulation: thŜ ŦǳŜƭ ǇǊƛŎŜ ŀƴŘ ǘƘŜ ǇŀǎǎŜƴƎŜǊΩǎ ŘŜƳŀƴŘ ōŜǘǿŜŜƴ ŜŀŎƘ ǇŀƛǊ ƻŦ ǘƘŜ ŀƛǊǇƻǊǘǎΦ ¢ƘŜǎŜ ǾŀǊƛŀōƭŜǎ ǿƛƭƭ
be generated by using a mechanism that will provide stochastic behaviour to the evolution of these variables
in different replicas of a simulation. The mechanism calculates three different values for each variable and
time step of the simulation:

¶ Profile value, P(t). The value will be obtained from predefined data on the simulation platform or
previously inserted by the user.

¶ Forecast value, F(t). It is the value of the variable that the agents predict for the time step. It is
calculated by adding to the profile value the difference between the Actual value and Profile value of
the previous time step.

Ὂὸ ὖὸ ὃὸ ρ ɀ ὖὸ ρ

¶ Actual value, A(t). It is the real value of the variable that will alter the utility obtained by each agent. It
will be calculated by using a Normal distribution of probability centred on the Forecast value. An
additional parameter V will control the standard deviation to enable different levels of volatility, so that:

ὖ ὃὸ ρ ὠ z Ὂὸȟρ ὠ z Ὂὸ πȢωωχ

2.3 Dynamic model

All the dynamic interactions between the components of the ACCESS simulation platform will be triggered by
previous user actions made over the front-end of the user interface, thus the analysis of these interactions and
its spread along the system will accomplish the objective of analysing the interaction model.

The user interface will offer two different areas depending on the role of the user:

¶ Configuration area. It will be used to consult, add, modify or delete entities that represent the
stakeholders participating in the slot allocation process. These entities will be used later to generate the
simulation scenarios that can be used in new experiments.

¶ Experimentation area. The area will be used to define new experiments and, after their execution, the
exploration of results and KPIs, including their download using standard formats.

The users holding the administration role will be able to access both areas, while users without that role will
only be able to use the functionality related with the experimentation.

Simulation and Analysis Toolset

© ACCESS Consortium Page 16 of 85

Figure 2. Use case diagram of prototype

When a user requires any action to be performed over the data scheme by using the Configuration area of the
simulation platform, a process is triggered until lastly the users perceives the final result.

The process starts when the administrator user, by means of the front-end of the platform, launches an HTTP
request to the application server asking for the execution of one of the available Create-Read-Update-Delete
(CRUD) operations (1) (see Figure 3). The Servlet Dispatcher captures the request, finds the controller
responsible for its handling, and ensembles a new Message instance containing the information of the HTTP
Request (1.1).

The first step on the Controller is the Message validation to ensure the contained information is syntactically
correct and well formed (1.1.1). There are two options: if it is not valid, the Controller will return an error
response (1.1.3) that will be encoded by the Servlet Dispatcher in an HTTP Response, and finally sent back to
ǘƘŜ ǳǎŜǊΩǎ ōǊƻǿǎŜǊ όмΦмΦоΦмύΦ hƴ ǘƘŜ ƻǘƘŜǊ Ƙŀnd, if the original Message complies with the specified formats (2)
the Controller asks the Model component (2.1) to transform the original Message into a new model instance
according to the entity type which will be receiving the operation (airport, airline, aircraft, etc.). Then the
Controller calls the corresponding instance of Service that processes the model by using the algorithm
associated to the requested operation (2.3). Once the operation has been performed, the Service component
persists the change by calling the Repository component (2.3.1) which completes the changes in the Data
repository (2.3.1.1 and 2.3.1.2) and returns the operation exit value to the Service (2.3.2).

In the last steps of the process, the exit value (if there was an error) or the successfully altered model are
returned to the Controller (2.3.3), which asks for its transformation into a new Message including a textual
feedback for the user (2.3.3.1 and 2.3.3.1.1). Finally, the message is encoded by the Servlet Dispatcher in an
HTML message (2.3.3.1.1.1) that is shown to the user in the front-end component.

Simulation and Analysis Toolset

© ACCESS Consortium Page 17 of 85

Figure 3. Sequence diagram of collaboration for configuration

The process followed in the Experimentation area when the user requests the schedule of a new experiment
or the verification of the outcomes of a previous experiment is equivalent to the one described in the
Configuration section. Yet, the first operation prompts the activation of the Scheduler component of the
simulation engine that will be checking for waiting experiments in the queue every few seconds (2). When an
experiment is found (2.1), the Scheduler initialises the set of agents participating in the simulation (2.1.1-5).

Figure 4. Sequence diagram of collaboration for experimentation

The remainder part of the process in the simulation engine follows the process presented in Working Paper 4.
ACCESS Simulation Framework Specification. The resulting BPMN process is shown in Figure 5. Diagram of the
simulation logic.

Simulation and Analysis Toolset

© ACCESS Consortium Page 18 of 85

Figure 5. Diagram of the simulation logic

Simulation and Analysis Toolset

© ACCESS Consortium Page 19 of 85

3. Technical design

This section describes the technical specification that has been produced for the implementation of the
ACCESS simulation platform, covering two main items: (i) the nature and structure of the data managed by the
components of the simulation platform, and (ii) the structure and organisation of the software classes that
implement the behaviour of these components.

Both designs have been revisited along the evolution of the development phase in order to include additional
implementation details. The sections below contain the latest revision of the specification.

3.1 Technology stack

The analysis of the functionality that shall be provided by the simulation platform has led to a selection of the
technologies used in its development (see Figure 6). A brief description of each one is provided in the next
sections.

ABM and Back-end Front-end

Figure 6. Technology stack of the simulation platform

Simulation and Analysis Toolset

© ACCESS Consortium Page 20 of 85

3.1.1 Back-end technologies

¶ Java Enterprise Edition (JEE) ƛǎ ǘƘŜ hǊŀŎƭŜΩǎ ŜƴǘŜǊǇǊƛǎŜ ŎƻƳǇǳǘƛƴƎ ǇƭŀǘŦƻǊƳΦ ¢ƘŜ ǇƭŀǘŦƻǊƳ ǇǊƻǾƛŘŜǎ ŀƴ
application programming interface (API) and runtime environment for developing and running large-
scale, multi-tiered, scalable, reliable, and secure network applications. JEE extends the Standard Edition
of the Java platform (JSE) providing an API for object-relational mapping, distributed and multi-tier
architectures, and web services. The platform incorporates a design based largely on modular
components running on an application server (e.g., Apache Tomcat). Software for JEE is primarily
developed in the Java programming language.
http://www.oracle.com/technetwork/java/javaee/overview/index.html

¶ Apache Maven is a comprehensive project information tool, whose most common application is
building Java code. Maven offers unparalleled software lifecycle management, providing a cohesive
suite of verification, compilation, testing, packaging, reporting, and deployment plugins.
https://maven.apache.org

¶ Apache Tomcat is a popular open-source application server and web server developed by the Apache
Software Foundation (ASF). Tomcat implements the core JEE specifications allowing the deployment of
applications developed for this platform. Currently Apache Tomcat powers numerous large-scale,
mission-critical web applications across a diverse range of industries and organisations.
http://tomcat.apache.org

¶ Spring Framework is an open-source application framework providing a comprehensive programming
and configuration model for modern Java-based enterprise applications (JEE). Spring is compounded by
a core framework and additional framework modules which provide infrastructural support at different
areas of the application level. The core framework provides support for dependency injection,
transaction management, web applications, data access, messaging, and testing. The backend of the
ACCESS simulation platform also employs the frameworks below:

o Spring MVC: the Spring Web model-view-controller (MVC) framework is an HTTP and servlet-
based framework providing hooks for extension and customisation of web applications
and RESTful web services.

o Spring Data is an abstraction framework which reduces the amount of boilerplate code
required for the implementation of data access layers on the persistence frameworks (e.g.
Hibernate).

o Spring Security is a framework that focuses on providing both authentication and
authorisation to Java applications, as well as protection against attacks like session fixation,
clickjacking, cross site request forgery, etc.

http://spring.io

¶ Hibernate is a framework based on the Object/Relational Mapping (ORM) paradigm which enables
developers to write applications whose data outlives the application process. Hibernate provides an
implementation of the Java Persistence API (JPA) specification. As such, it can be used in any
environment supporting JPA including Java SE applications, Java EE application servers, etc. Hibernate
can use relational and not relational databases to store the information managed by the applications.
http://hibernate.org

¶ MySQL is an open source relational database management system (RDBMS) based on Structured Query
Language (SQL). MySQL runs on virtually all platforms, including Linux, UNIX, and Windows. Although it
can be used in a wide range of applications, MySQL is most often associated with web-based
applications and online publishing, providing means to reliability store and recover data according to
the ACID principles (Atomicity, Consistency, Isolation, Durability), essential for this kind of applications.
https://www.mysql.com

http://www.oracle.com/technetwork/java/javaee/overview/index.html
https://maven.apache.org/
http://tomcat.apache.org/
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/Java_Servlet_API
https://en.wikipedia.org/wiki/REST
http://spring.io/
http://hibernate.org/
https://www.mysql.com/

Simulation and Analysis Toolset

© ACCESS Consortium Page 21 of 85

¶ Apache Tiles is an open-sourced templating framework for Java applications. Based upon the Composite
pattern it allows developers to define page fragments which can be assembled into a complete web
page at runtime. These fragments can be used as simple includes in order to reduce the duplication of
common page elements or embedded within other tiles to develop a series of reusable templates. These
templates streamline the development of a consistent look and feel across an entire application.
https://tiles.apache.org

3.1.2 Front-end technologies

¶ HTML5, JavaScript and CSS3 are the core technologies used by millions of modern web pages along the
Internet. HTML5 is the current version of the mark-up language employed for structuring and presenting
the contents, CSS3 is a style sheet language used for describing the look and formatting of a document
written in HTML, and finally JavaScript provides of dynamic behaviours to the documents.
http://www.w3.org/standards/webdesign/htmlcss

¶ AngularJS is a JavaScript framework developed by Google to support the development of for Single Page
Applications (SPA), web applications that that load a single HTML page and dynamically update that
page as the user interacts with the application.
https://angularjs.org

¶ JQuery is another JavaScript library which aims to simplify the client-side scripting of the applications.
Basically it makes easier to navigate a document, select DOM elements, create animations, handle
events, and develop Ajax applications.
https://jquery.com

¶ D3, standing for Data-Driven Documents, is a JavaScript library for manipulating documents based on
data. It combines data-driven approach to DOM manipulation with powerful visualisation components
allowing the generation of fully dynamic and interactive visualizations.
http://d3js.org

¶ Bootstrap ƛǎ ǘƘŜ ¢ǿƛǘǘŜǊΩǎ ŦǊŀƳŜǿƻǊƪ ŦƻǊ ǘƘŜ ŘŜǾŜƭƻǇƳŜƴǘ ƻŦ ǿŜō ŀǇǇƭƛŎŀǘƛƻƴǎΦ Lǘ ǇǊƻǾƛŘŜǎ ŀ ǎŜǘ ƻŦ
typography, forms, buttons, navigation and other interface components, as well as optional JavaScript
extensions extensively customizable to create web user interfaces.
http://getbootstrap.com

¶ Chrome is the freeware web browser developed by Google, offering an outstanding performance and
providing support to the cutting edge web standards. It is available for multiple desktop and mobile
platforms, including Windows, Linux, OSX, Android and IOS.
http://www.google.com/chrome

3.2 Data repository

The simulation platform shall maintain the information related with the definitions of the different scenarios
used for experimentation, as well as the data generated during the execution of the experiments for
subsequent analysis. For this purpose, the simulation platform will employ a relational database management
system (RDBMS).

The selected RDBMS consists of a standard instance of MySQL server version 5.6 running together with an
InnoDB storage engine, providing high-reliability and high-performance operations. Additionally, the InnoDB
engine implements ACID properties, with transactions featuring commit, rollback, and crash-recovery
capabilities to safeguard the integrity of the data contained in the repository.

https://tiles.apache.org/
http://www.w3.org/standards/webdesign/htmlcss
https://angularjs.org/
https://jquery.com/
http://d3js.org/
http://getbootstrap.com/
http://www.google.com/chrome

Simulation and Analysis Toolset

© ACCESS Consortium Page 22 of 85

A specification of the data scheme has been designed to preserve the data following efficient practices. The
data scheme has been normalised in its Third Normal Form (3NF) to ensure the referential integrity of the
stored data and minimise the number of duplicates to avoid the potential overgrowth of the database size that
would lead to a deterioration of the performance of the persistence mechanism.

Additionally, to prevent unauthorised access to the data, the repository will only be accessible by the
components of the back-end of the user interface and the simulation engine through a local connection.

The data managed by the simulation platform will be included in a unique scheme of the data repository in
order to preserve internal relationships. However, it can be seen as two virtual structures according to the
components of the platform that will directly access the stored information (user interface and simulation
engine). The next sections describe the entities contained in each of these structures.

3.2.1 User interface data structure

The data structure of the user interface is mainly responsible for the management of the information in
relation with the scenarios, the different entities that can be part of the scenarios (airports, airlines, aircraft,
etc.) and its characterisation. The next figure and tables describe the data tables that constitute this structure
on the database.

Figure 7. Entity relationship diagram of the user interface data structure

Simulation and Analysis Toolset

© ACCESS Consortium Page 23 of 85

Entity Description

Aircraft table Representation of an aircraft type. An aircraft type can be included in the fleet
of different airline companies.

Airline table An airline company operating flights between some airports of the scenario.

Airport table An airport infrastructure which can serve as origin or destination of the flights
operated by the different airline companies.

Alliance table Association of multiple airlines cooperating for common benefit.

Coordinated_airport table Specialisation of the airport entity characterised by a capacity divided in slots
which are organised in coordination intervals. The utilisation of the slots is
managed by the slot allocation coordinator agent.

Coordination_interval table Capacity available in a coordinated airport at a given time period or
coordination interval.

Demand_profile table Foreseen passenger demand willing to travel from an origin airport to a
destination airport in a month of the simulation.

Demand_utility table Measurement of the utility obtained by the passengers from travelling from an
origin airport to a destination airport.

Fleet table No of aircraft units of some type that belong to an airline company.

Fuel_price_profile table Foreseen fuel price in a month of the simulation.

Grandfather_right table If administrative mechanism is used in the simulation, it refers to the utilisation
rights that an airline company holds over an airport slot due its utilisation in the
previous season.

Hub table Airports that an airline companies use as a transfer point to get passengers to
their intended destination airport.

Landing_fee table Charge for the use of airport infrastructure for an operation. The amount
depends of the aircraft model.

Rolling_interval table Limitation on the continuous use of the infrastructure of the airport.

Scenario table Combination of entities (airports, airlines, aircrafts, etc.) that will be put
together and set up to be eligible to perform experimentation over them.

Season_airline table Association of an airline to a concrete scenario. Airline companies can be used
concurrently, i.e. in different scenarios at the same time.

Season_airport table Association of an airport to a scenario. Airports can be used concurrently, i.e.
in different scenarios at the same time.

Turnaround table Time needed to perform the operations after a landing operation of the aircraft
that prepares it for a new take-off.

User table Final users of the ACCESS simulation platform.

Table 3. Description of the user interface data tables

Simulation and Analysis Toolset

© ACCESS Consortium Page 24 of 85

Aircraft table

Column Type Description

id int(11) Unique identifier of the aircraft row in the data table.

created_at datetime Registration of the creation timestamp.

updated_at datetime Registration of the last update timestamp.

user_name varchar(63) Name of the user who defined the aircraft type.

code varchar(4) Unique code identifying the aircraft type, composed by 3 or 4
characters.

name varchar(63) Extended name which identifies the aircraft type.

cruise_speed int(11) Cruise speed of the aircraft type measured in kilometres per hour.

fuel_comsumption int(11) Consumption of fuel per hour of flight, measured in kilograms per hour.

mtow int(11) Maximum take-off weight measured in metric tons.

aircraft_range int(11) Maximum distance between airports the aircraft type can fly,
measured in kilometres.

seating_capacity int(11) Number of passengers the aircraft model can transport in each single
flight.

unit_cost decimal(19,2) Cost of a unit of this aircraft model from the manufacturer, measured
in euros.

Table 4. Aircraft table

Airline table

Column Type Description

id int(11) Unique identifier of the airline company in the table.

created_at datetime Registration of the creation timestamp.

updated_at datetime Registration of the last update timestamp.

user_name varchar(63) Name of the user who defined the airline company.

code varchar(3) Unique code identifying the airline company formed by 3 characters.

name varchar(63) Extended name which identifies the airline company.

business_model varchar(255) Business model of the airline company. Possible values are:
NETWORK, LOW_COST, REGIONAL, CHARTER and CARGO.

alliance_id int(11) Identifier of the alliance, if the airline belongs to any.

fleet_modification tinyint(1) Boolean value specifying if the airline company can restructure the
composition of its fleet during the simulation.

Table 5. Airline table

Simulation and Analysis Toolset

© ACCESS Consortium Page 25 of 85

Airport table

Column Type Description

id int(11) Unique identifier of the airport in the table.

created_at datetime Registration of the creation timestamp.

updated_at datetime Registration of the last update timestamp.

user_name varchar(63) Name of the user responsible for the creation of the airport.

code varchar(4) Unique code of the airport formed by 4 characters.

name varchar(63) Extended name which identifies the airport.

type varchar(255) Coordination level of the airport. Possible values are:
PRIMARY and SECONDARY.

level varchar(255) Category of the airport depending of its coordination
requirements. Possible values are: COORDINATED,
NON_COORDINATED and SCHEDULE_FACILITATED.

opening_time int(11) Instant of the day in which the airport starts its operation,
stated in minutes from midnight.

closing_time int(11) Instant of the day in which the airport finishes its operation (no
arrival or departure flights are allowed at that moment), stated
in minutes from midnight.

position_latitude decimal(9,6) Latitude of the airport position in decimal degrees using the
UTM projection.

position_longitude decimal(9,6) Longitude coordinate of the airport position in decimal degrees
using the UTM projection.

landing_fees_schema varchar(255) Pricing model of landing fees along the day. Possible values
are: UNIFORM and TIME_BASED.

landing_fees_modification tinyint(1) Boolean value specifying if the airport can modify its landing
fees during the simulation.

Table 6. Airport table

Alliance table

Column Type Description

id int(11) Unique identifier of the alliance in the table.

created_at datetime Registration of the creation timestamp.

updated_at datetime Registration of the last update timestamp.

user_name varchar(63) Name of the user who created the alliance row.

name varchar(63) Unique name which identifies the alliance of airline companies.

Table 7. Alliance table

Simulation and Analysis Toolset

© ACCESS Consortium Page 26 of 85

Coordinated_airport table

Column Type Description

id int(11) Unique identifier of the associated row in the airport
table.

coordination_intervals_length int(11) Duration of the time intervals in this row of airport.
Possible values are: 5, 10, 15 or 20 minutes.

coordination_intervals_schema varchar(255) Model of the availability of the airport infrastructure
at different coordination intervals. Possible values
are: UNIFORM and TIME_BASED.

coordination_intervals_modification tinyint(1) Boolean value specifying if the airport can perform
an expansion of its infrastructure during the
simulation.

rolling_intervals_length int(11) Duration of the time which will be used to assess the
limitations of use of the infrastructure of the airport.
Possible values are: 0, 10, 15, 20, 30 or 60.

rolling_intervals_schema varchar(255) Model of the limitations on the continuous use of the
airport infrastructure. Possible values are:
UNIFORM and TIME_BASED.

Table 8. Coordinated_airport table

Coordination_interval table

Column Type Description

id int(11) Unique identifier of the coordination interval in the table.

airport_id int(11) Identifier of the airport which the coordination interval row
belongs to.

time int(11) Time at which the coordination interval starts, measured in
minutes from midnight.

arrival_capacity int(11) Number of slots available for landing operations in the airport at
this coordination interval.

departure_capacity int(11) Number of slots available for take-off operations in the airport at
this coordination interval.

infrastructure_capacity int(11) Maximum number of operations that can perform the airport at
this coordination interval, including landing and take-off
operations.

arrival_value decimal(19,2) Value in euros of a slot to perform a landing operation in the
airport at this coordination interval.

departure_value decimal(19,2) Value in euros of a slot to perform a take-off operation in the
airport at this coordination interval.

Table 9. Coordination_interval table

Simulation and Analysis Toolset

© ACCESS Consortium Page 27 of 85

Demand_profile table

Column Type Description

id int(11) Unique identifier of the demand profile value in the table.

scenario_id int(11) Unique identifier of the scenario which the demand profile row
belongs to.

origin_airport int(11) Identifier of the airport which the passengers will depart from.

destination_airport int(11) Identifier of the airport which the passengers will arrive to.

month int(11) Number of month in the simulation in which the demand value will
apply.

value bigint(20) Total number of passenger willing to travel, including both business
and leisure types.

Table 10. Demand_profile table

Demand_utility table

Column Type Description

id int(11) Unique identifier of the demand utility row in the data table.

scenario_id int(11) Identifier of the scenario which the demand profile row belongs to.

origin_airport int(11) Identifier of the airport which the demand will depart from.

destination_airport int(11) Identifier of the airport which the demand will arrive to.

leisure decimal(19,2) Utility, measured in euros, of the travel from the origin airport to the
destination airport for a passenger of leisure type.

business_peak decimal(19,2) Maximum utility, measured in euros, of the travel from the origin
airport to the destination airport for a passenger of business type.

business_valley decimal(19,2) Minimum utility, measured in euros, of the travel from the origin
airport to the destination airport for a passenger of business type.

Table 11. Demand_utility table

Fleet table

Column Type Description

id int(11) Unique identifier of the fleet row in the data table.

airline_id int(11) Identifier of the airline company which the fleet element row belongs
to.

aircraft_id int(11) Identifier of the aircraft type which the fleet element row is associated
to.

units int(11) Number of units of the aircraft type which are property of the airline
company.

direct_cost decimal(19,2) Direct cost involved in the operation of the aircraft measured in euros
per kilometre.

indirect_cost decimal(19,2) Percentage of the direct cost that applies as indirect cost expressed
as a decimal number from 0 to 1.

Table 12. Fleet table

Simulation and Analysis Toolset

© ACCESS Consortium Page 28 of 85

Fuel_price_profile table

Column Type Description

id int(11) Unique identifier of the row in the data table.

month int(11) Month of the simulation in which the price will be used.

fuel_price_type varchar(255) Type of profile of the fuel price. Possible values are: HIGH_PRICE,
REFERENCE and LOW_PRICE.

price decimal(19,2) Price of the fuel expressed in euros per kilogram.

Table 13. Fuel_price_profile table

Grandfather_right table

Column Type Description

id int(11) Unique identifier of the row in the data table.

scenario_id int(11) Identifier of the scenario which the demand profile row belongs to, or
Null if it is associated to a season.

season_id int(11) Identifier of the season which the demand profile row belongs to, or
Null if it is associated to a scenario.

airline_id int(11) Identifier of the airline company which owns the grandfather right.

airport_id int(11) Identifier of the airport which the grandfather right is associated to.

time int(11) Moment of the day measured in minutes from midnight, in which the
coordination time interval starts.

slot_type varchar(255) Type of slot associated to the grandfather right. Possible values:
ARRIVAL and DEPARTURE.

quantity int(11) Number of slots which this grandfather right row represents.

Table 14. Grandfather_right table

Hub table

Column Type Description

id int(11) Unique identifier of the hub row in the data table.

airline_id int(11) Identifier of the airline company that use the hub airport.

airport_id int(11) Identifier of the airport used as a hub.

Table 15. Hub table

Simulation and Analysis Toolset

© ACCESS Consortium Page 29 of 85

Landing_fee table

Column Type Description

id int(11) Unique identifier of the landing fee row in the data table.

airport_id int(11) Identifier of the airport the landing fee belongs to

aircraft_id int(11) Identifier of the aircraft type the landing fee is associated to.

time int(11) Time measured in minutes from midnight in which the hourly period
for the landing fee applies. If the landing fee schema has been set to
UNIFORM the value of the field is -1.

cost decimal(19,2) Charge in euros for each landing operation of an aircraft of the
selected type at the selected airport.

Table 16. Landing_fee table

Rolling_interval table

Column Type Description

id int(11) Unique identifier of the coordination interval row in the data table.

airport_id int(11) Identifier of the airport this rolling interval restriction belongs to.

time int(11) Time the rolling interval restriction begins at. It is measured in
minutes from the midnight, and it will be -1 if the rolling interval
schema attribute of the airport has been set to UNIFORM value.

arrival_capacity int(11) Maximum number of consecutive slots available for landing
operations at the selected airport during the current rolling interval.

departure_capacity int(11) Maximum number of consecutive slots available for take-off
operations at the selected airport during the current rolling interval.

infrastructure_capacity int(11) Maximum number of operations that can perform the airport at the
current rolling interval, including landing and take-off operations.

Table 17. Rolling_interval table

Simulation and Analysis Toolset

© ACCESS Consortium Page 30 of 85

Scenario table

Column Type Description

id int(11) Unique identifier of the scenario row in the data
table.

created_at datetime Registration of the creation timestamp.

updated_at datetime Registration of the last update timestamp.

user_name varchar(63) Name of the user who created the scenario.

name varchar(63) Extended name which identifies the scenario.

description varchar(255) Brief descriptive text related to the scenario
characteristics.

public_availability tinyint(1) Boolean value to indicate if the scenario can be used
by other users for experimentation.

horizon int(11) Time interval which can be simulated in the scenario,
expressed in months.

time_step_length int(11) Length of each time step that will be used in the
simulation.

fuel_price_type varchar(255) Definition of fuel price that applies to the scenario.
Possible values are: HIGH_PRICE, REFERENCE
and LOW_PRICE.

fuel_price_volatility varchar(255) Volatility value that will be applied to the fuel price
during the simulation. Possible values are: HIGH,
MEDIUM and LOW.

demand_volatility varchar(255) Volatility value that will be applied to the demand
between each pair of airports on the simulated
period. Possible values are: HIGH, MEDIUM and
LOW.

landing_fees_modification tinyint(1) Boolean value that specifies if the landing fees of the
airports associated to the scenario can be reviewed
during the simulation execution.

coordination_intervals_modification tinyint(1) Boolean value that specifies if the infrastructure of
the airports associated to the scenario can be
expanded during the simulation execution.

fleet_modification tinyint(1) Boolean value that setup if the fleet of the airlines
associated to the scenario can be modified during
the simulation.

Table 18. Scenario table

Scenario_airline table

Column Type Description

id int(11) Unique identifier of the row in the data table.

scenario_id int(11) Identifier of the scenario the airline company will be associated to.

airline_id int(11) Identifier of the associated airline company.

Table 19. Scenario_airline table

Simulation and Analysis Toolset

© ACCESS Consortium Page 31 of 85

Scenario_airport table

Column Type Description

id int(11) Unique identifier of the row in the data table.

scenario_id int(11) Identifier of the scenario the airport will be associated to.

airport_id int(11) Identifier of the associated airport row.

Table 20. Scenario_airport table

Turnaround table

Column Type Description

id int(11) Unique identifier of the row in the data table.

airport_id int(11) Identifier of the selected airport row.

airline_id int(11) Identifier of the selected airline company.

aircraft_id int(11) Identifier of the selected aircraft type.

duration int(11) Duration of the turnaround period expressed in minutes.

Table 21. Turnaround table

User table

Column Type Description

id int(11) Unique identifier of the user row in the data table.

enabled tinyint(1) Boolean value indicating if the used is active (1) or not (0).

name varchar(63) Unique username for the user. It will be used to identify the entities
that have been created by the user.

password varchar(255) Password of the user which will be used in the authentication
process.

user_role varchar(255) Role of the user in the simulation platform. Possible values are:
ADMIN_ROLE and USER_ROLE.

Table 22. User table

Simulation and Analysis Toolset

© ACCESS Consortium Page 32 of 85

3.2.2 Simulation engine data structure

The data structure of the simulation engine implementation provides persistence to the data describing the
partial and final results of the simulation process. The next figure and tables describes the entities related to
this process.

Figure 8. Entity relationship diagram of the simulation engine data structure

Entity Description

Arrival_slot_request table Applications that airline companies have made for an arrival slot on a
concrete coordination interval of an airport.

Auction table Representation of a complete slot allocation process of the airports
of the scenario, when it is made using an auction mechanism.

Auction_round table The table contains the information regarding each round performed
in the auction process.

Auctioned_coordination_interval
table

Wrapper of the coordination interval that provides information
regarding the auction process.

Common_parameter table Table that contains static configuration of the software components
of the simulation engine (agents, exogenous variablesé) using key-
value format.

Demand table Values of the passengers demand in each time step of the
experiment, including profile, forecasted and actual values.

Departure_slot_request table Application that an airline makes for a departure slot on a concrete
coordination interval of an airport.

Experiment table The table contains the complete set of experiment that have been
created, executed or not by the simulation engine software.

Flight table Each flight included in the desired schedule of the airlines set and
the actual schedule generated by the slot allocation coordinator.

In_season table Current season of a time_step on an experiment. It is used for the
execution of potential secondary allocation mechanisms.

Simulation and Analysis Toolset

© ACCESS Consortium Page 33 of 85

Entity Description

Pre_season table Next season of a time_step on an experiment. It is used for the
execution of primary allocation mechanisms.

Primary_allocation_configuration
table

Configuration of the slot allocation mechanism used in primary slot
allocation. It is an abstraction over the configuration of different
mechanisms.

Primary_auction_configuration
table

Configuration of the auction mechanism used in primary slot
allocation.

Replica table Copies of the experiment using the same scenario and
parameterisation.

Season table Different seasons of a replica. It is an abstraction over the in_season
and pre_season tables.

Season_airline table Relationship between a season and an airline company

Season_airport table Relationship between a season and an airport instance.

Secondary_allocation_configuration
table

Configuration of the slot allocation mechanism used in secondary
slot allocation.

Time_step table Each of the months executed during the replica execution.

Table 23. Description of the simulation engine data tables

Arrival_slot_request table

Column Type Description

id int(11) Unique identifier of each slot request in the table.

price decimal(19,2) Price in euros of the arrival slot.

coordination_interval_id int(11) Identifier of the coordination interval instance to which the
arrival slot belongs to.

flight_id int(11) Identifier of the flight instance the arrival slot will be
(potentially) used by.

Table 24. Arrival_slot_request table

Auction table

Column Type Description

id int(11) Unique identifier of each auction in the table.

time_step_id int(11) Identifier of the time step in which the auction took place.

Table 25. Auction table

Auction_round table

Column Type Description

id int(11) Unique identifier of each round in the table.

auction_id int(11) Identifier of the auction to which the round belongs to.

number int(11) Ordinal number identifying the round in the auction process.

Table 26. Auction_round table

Simulation and Analysis Toolset

© ACCESS Consortium Page 34 of 85

Auctioned_coordination_interval table

Column Type Description

id int(11) Unique identifier of each auctioned coordination interval
row in the table.

auction_round_id int(11) Identifier of the round in which the slots are auctioned.

coordination_interval_id int(11) Identifier of the coordination interval that contains the
slots which are auctioned.

arrival_slot_price decimal(19,2) Price of each slot of the coordination interval for an arrival
operation.

departure_slot_price decimal(19,2) Price of each slot of the coordination interval for a
departure operation.

total_arrival_slot_requests int(11) Total number of requests made for the arrival slots of the
coordination interval.

total_departure_slot_requests int(11) Total number of requests made for the departure slots of
the coordination interval.

Table 27. Auctioned_coordination_interval table

Common_parameter table

Column Type Description

id int(11) Unique identifier of each pair key-value in the table.

param_key varchar(255) Unique name of the configuration parameter.

param_value varchar(255) Value of the configuration parameter.

comments varchar(255) Description of the configuration parameter.

Table 28. Common_parameter table

Demand table

Column Type Description

id int(11) Unique identifier of the demand row in the table.

time_step_id int(11) Identifier of the time step which the demand row
characterises.

origin_airport_id int(11) Identifier of the airport where the passengers depart.

destination_airport_id int(11) Identifier of the airport where the passengers arrive.

profile_demand bigint(20) Profile value of the number of passengers willing to travel
from the original airport to the destination airport.

forecasted_demand bigint(20) Forecasted value of the number of passengers willing to
travel from the original airport to the destination airport.

actual_demand bigint(20) Actual value of the number of passengers willing to travel
from the original airport to the destination airport.

actual_utility decimal(19,2) Actual utility obtained by the passengers that have
travelled from origin airport to destination airport,
measured as an average value in euros.

Table 29. Demand table

Simulation and Analysis Toolset

© ACCESS Consortium Page 35 of 85

Departure_slot_request table

Column Type Description

id int(11) Unique identifier of each slot request in the table.

price decimal(19,2) Price in euros of the departure slot.

coordination_interval_id int(11) Identifier of the coordination interval row to which the departure
slot belongs to.

flight_id int(11) Identifier of the flight instance the departure slot will be
(potentially) used by.

Table 30. Departure_slot_request table

Experiment table

Column Type Description

id int(11) Unique identifier of the experiment in the table.

created_at datetime Registration of the creation timestamp.

updated_at datetime Registration of the last update timestamp.

started_execution_at datetime Registration of the timestamp when the execution started.

finished_execution_at datetime Registration of the timestamp when the execution
finished.

user_name varchar(63) Name of the user who created the instance.

name varchar(63) Descriptive name of the experiment.

scenario_id int(11) Identifier of the scenario that will be used during the
execution of the experiment.

primary_allocation_type varchar(255) Mechanism that will be applied in the primary slot
allocation processes.

frequency_primary_allocation int(11) Time elapsed between consecutive primary slot allocation
processes.

secondary_allocation_type varchar(255) Mechanism that will be applied in the secondary
allocation processes.

tie_breaking_mechanism varchar(255) Mechanism that will be used by the slot allocation
coordinator agent to resolve potential conflicts.

total_replicas int(11) Total number of replicas that will be executed.

max_processing_time int(11) Maximum duration of the complete experiment execution.

status varchar(255) Status of the experiment execution. Possible values are:
WAITING, PROCESSING, COMPLETED and ERROR.

error_message varchar(255) If status is equals to ERROR, this text describes the
cause of the problem.

Table 31. Experiment table

Simulation and Analysis Toolset

© ACCESS Consortium Page 36 of 85

Flight table

Column Type Description

id int(11) Unique identifier of the flight row in the table.

season_id int(11) Identifier of the season in which the flight will be
made.

airline_id int(11) Identifier of the airline company that will operate
the flight.

aircraft_id int(11) Aircraft model that will be used in the flight.

departure_airport_id int(11) Identifier of the origin airport of the flight.

departure_time int(11) Departure time of the flight measured in minutes
from midnight.

departure_coordination_interval_id int(11) Identifier of the coordination interval associated to
the departure airport and time.

departure_slot_price decimal(19,2) Price of the slot that will be used for the take-off
operation.

arrival_airport_id int(11) Identifier of the arrival airport of the flight.

arrival_time int(11) Arrival time of the flight measured in minutes from
midnight.

arrival_coordination_interval_id int(11) Identifier of the coordination interval associated to
the arrival airport and time.

arrival_slot_price decimal(19,2) Price of the slot that will be used for the landing
operation.

operational_cost decimal(19,2) Total cost of the flight in euros, including direct and
indirect costs.

ticket_fare decimal(19,2) Price paid by the passengers to obtain a ticket in
the flight, expressed in euros.

offered_tickets bigint(20) Total number of tickets available for sale.

expected_sold_tickets bigint(20) Number of tickets that the airline company plans to
sell.

auctual_sold_tickets bigint(20) Number of tickets of the flight that have been sold.

Table 32. Flight table

Pre_season table

Column Type Description

id int(11) Unique identifier of the father season.

time_step_id int(11) Identifier of the time step which the season is
related to.

Table 33. Pre_season table

Simulation and Analysis Toolset

© ACCESS Consortium Page 37 of 85

In_season table

Column Type Description

id int(11) Unique identifier of the father season.

time_step_id int(11) Identifier of the time step which the season is
related to.

Table 34 In_season table

Primary_allocation_configuration table

Column Type Description

id int(11) Unique identifier of the row containing the
configuration for primary allocation.

experiment _id int(11) Identifier of the experiment the configuration row is
related to.

Table 35 Primary_allocation_configuration table

Primary_auction_configuration table

Column Type Description

id int(11) Unique identifier of the row containing the
configuration for primary allocation.

alpha_up decimal(19,2) Initial value of the factor used to scale positive
price multipliers between rounds.

alpha_down decimal(19,2) Initial value of the factor used to scale down price
multipliers between rounds.

initial_value varchar(255) Values of the slots at the beginning of an auction.
Possible values are: ZERO and
PREVIOUS_VALUE.

initial_value_multiplier decimal(19,2) Auction multiplier that generates the values of the
initial slot prices.

review_percentage decimal(19,2) alpha_up and alpha_down are revised by this
factor after a steps_unitl_review number of rounds.

steps_until_review int(11) Number of auction rounds after which alpha_up
and alpha_down factors are revised.

stop_criteria varchar(255) Defined stop criteria of the auction mechanism.
Possible values are: C1, C2, C3, C1_OR_C2,
C1_OR_C3, C2_OR_C3, C2_AND_C3,
C1_OR_C2_AND_C3 and C1_OR_C2_OR_C3.

Table 36 Primary_auction_configuration table

Simulation and Analysis Toolset

© ACCESS Consortium Page 38 of 85

Replica table

Column Type Description

id int(11) Unique identifier of the replica in the table.

number int(11) Ordinal number of the replica in the total set of
replicas of the experiment.

experiment_id int(11) Identifier of the associated experiment.

Table 37 Replica table

Season table

Column Type Description

id int(11) Unique identifier of the season in the table.

number int(11) Ordinal number of the season in the replica.

Table 38 Season table

Season_airline table

Column Type Description

id int(11) Unique identifier of the row of configuration for
primary allocation in the table.

season_id int(11) Identifier of the season which the airline is
associated to.

airline_id int(11) Identifier of the associated airline company.

Table 39 Season_airline table

Season_airport table

Column Type Description

id int(11) Unique identifier of the season_airport instance in
the table.

season_id int(11) Identifier of the season which the airport is
associated to.

airport_id int(11) Identifier of the associated airport entity.

Table 40 Season_airport table

Secondary_allocation_configuration table

Column Type Description

id int(11) Unique identifier of the configuration of secondary
allocation in the table.

experiment _id int(11) Identifier of the experiment which this configuration
instance is related to.

Table 41 Secondary_allocation_configuration table

Simulation and Analysis Toolset

© ACCESS Consortium Page 39 of 85

Time_step table

Column Type Description

id int(11) Unique identifier of the time step in the table.

replica_id int(11) Identifier of the replica associated to the time step.

month int(11) Ordinal number of the month of the simulation of
which the time step instance collect information.

profile_fuel_price decimal(19,2) Reference value of the fuel price in euros per
kilogram.

forecasted_fuel_price decimal(19,2) Forecasted value of the fuel price in euros per
kilogram.

actual_fuel_price decimal(19,2) Actual value of the fuel price in euros per kilogram.

Table 42 Time_step table

3.3 Software modules

This section describes the internal structure of the software that implements the ACCESS simulation platform.
The functionality provided by the software has been distributed in two main functional modules: a user
interface, and an implementation of the simulation engine. Each module will be described individually in the
following sections.

3.3.1 User interface

The user interface enables the interaction between the final users and the simulation platform. It implements
a client-server architecture based on web technologies to allow the users to access the platform by using a
common web browser. The architecture is divided in two intercommunicated components:

¶ The back-end is the software stack running on the server side. It is responsible for the processing of the
front-end requests, the communication with the data model, and the provision of responses that can be
presented by the front-end;

¶ The front-end is the graphical interface between the back-end and the end user, running on the web
browser.

The communication between both components has been implemented using web technology too. The
backend of the simulation platform provides a RESTful web services API that enables the interaction between
this component and the front-end. This kind of API provides lightweight communications between producer
and consumer, so it has become a popular building style for cloud-based APIs. REST facilitates a decoupled
design of the architecture in which the API services can be called not only from the front-end component of
the platform, but also by third parties components, desktop or mobile applications that can use the current
services to provide additional functionality, such as further analysis or enhanced visualisations.

3.3.1.1 Back-end design

The ACCESS simulation platform has been developed using Java technology. Specifically, version 7 of the
Enterprise Edition developed by Oracle has been employed. This version of the Java architecture implements a
design based largely on modular components running on an application server. The selected implementation
of the application server is version 7 of the Apache Tomcat server.

Simulation and Analysis Toolset

© ACCESS Consortium Page 40 of 85

Additional frameworks are used to implement different aspects of the application, such as the MVC pattern,
ORM model, database access, etc. Brief descriptions of these frameworks have been provided in section 3.1.1.
The tool Apache Maven automatically recompiles and downloads all the additional frameworks needed for the
deployment of the simulation platform. A reference of the components and the versions used is included in
the table below.

Framework Version

Hibernate

Hibernate JPA API 1.0.1

Hibernate Entity Manager 4.2.4

Java EE

Java Servlet API 3.0.1

Java JSP API 2.2

JSTL 1.2

MySQL Connector 5.1.14

Spring Framework

Spring ORM 3.1.1

Spring Web MVC 3.1.1

Spring Context 3.1.1

Spring Security Core 3.1.1

Spring Security Configuration 3.1.1

Spring Security Tag Libraries 3.1.1

Spring Security Web 3.1.1

Spring JDBC 3.2.3

Spring OXM 3.1.1

Sprint Data JPA 1.2.0

Tiles

Tiles Core 2.2.2

Tiles JSP 2.2.2

Tiles Servlet 2.2.2

Tiles Template 2.2.2

Table 43 Versions of the frameworks components

The Java programming language, in which the simulation platform is implemented, gathers the code into
classes that at the same time are assembled into packages. Classes with common objectives are grouped
together in a common package. The next figure represents the package structure defined for the back-end of
the user interface, including the different interdependencies between packages.

Simulation and Analysis Toolset

© ACCESS Consortium Page 41 of 85

Figure 9 Package diagram of the user interface back-end

There is a strong interrelation between the Java packages. The next tables analyse the objectives of each
package and its interrelationships with other packages, and provide a succinct description of the classes that
contain.

Element Description

Controller.api package The Controller classes of this package will implement the RESTful
API. It will be responsible for the treatment of the API calls that will
request to perform CRUD operations to update the modelôs state. The
request will be dispatched to the class of the service package that can
process it and its response will be forwarded to the requester.

Controller.web package It contains the classes responsible for the provision of the front-end
components of the user interface to the browser of the user.

Interceptor package It is responsible for the capture of the calls to the RESTful API and the
identification of the users who make it.

Message package It holds the bean classes that gather the information of the entities
that have been sent using the RESTful API.

Message.helper package It includes the classes responsible for the validation of the Message
beans and the transformation of it into beans of the model package
and vice versa.

Model package It contains the classes that will be associated to the data repository
tables using the Object-relational mapping (ORM) framework.

Model.enumerated package It contains the defined values or enumerations that will be used in the
application.

Repository package It contains the classes that perform the actual Object-relational
mapping of the classes contained in the model package to the
corresponding tables in the data repository.

Resolver package It contains the class responsible for the injection of authorisation
information in the classes of the controller.api package.

Service package It contains the classes that implement the CRUD functionality of the
application maintaining the coherence of the data model.

Table 44. Packages implementing the user interface back-end

Simulation and Analysis Toolset

© ACCESS Consortium Page 42 of 85

Controller.api package

Class Description

AircraftController It implements the methods in charge of the pre-processing and
forwarding of the request related to CRUD operations on the Aircraft
entities of the model.

AirlineController It implements the methods in charge of the pre-processing and
forwarding of the request related to CRUD operations on the Airline
entities of the model.

AirportController It implements the methods in charge of the pre-processing and
forwarding of the request related to CRUD operations on the Airport
entities of the model.

AllianceController It implements the methods in charge of the pre-processing and
forwarding of the request related to CRUD operations on the Alliance
entities of the model.

ExperimentController It implements the methods in charge of the pre-processing and
forwarding of the request related to CRUD operations on the
Experiment entities of the model.

ScenarioController It implements the methods in charge of the pre-processing and
forwarding of the request related to CRUD operations on the Scenario
entities of the model.

Table 45. Controller.api package

Controller.web package

Class Description

Configurationcontroller It implements the controller of the Configuration section of the user
interface.

ErrorController It contains the controller that manages the way in which the user
interface faults are shown to the user.

ExperimentationController It implements the controller of the Experimentation section of the user
interface.

HomeController It provides a controller that manages the redirection of the
uncontrolled accesses to a controlled view.

IndexController It provides the controller of the view shown to the user after a
successful login.

LoginController It contains the controller that manages the login view of the user
interface.

Table 46. Controller.web package

Interceptor package

Class Description

LoginInterceptor It is responsible for the interception in the Spring framework of the
requests to the RESTful API in order to capture the user information
that enables the authorization process.

Table 47. Interceptor package

Simulation and Analysis Toolset

© ACCESS Consortium Page 43 of 85

Message package

Class Description

AircraftMessage It implements the message sent to the RESTful API containing the
attributes that characterizes an aircraft type.

AirlineMessage It implements the message sent to the RESTful API containing the
attributes that characterizes an airline company.

AirportMessage It implements the message sent to the RESTful API containing the
attributes that characterizes an airport.

AllianceMessage It implements the message sent to the RESTful API containing the
attributes that characterizes an alliance of airline companies.

DemandForecastMessage It holds the value of passengersô demand between two pairs of
airports on a concrete month.

ExperimentMessage It implements the message sent to the RESTful API containing the
definition of an experiment.

FleetMessage It includes the definition of a set of aircraft of that belongs to an airline
company.

GrandfatherRightMessage It holds the grandfather rights that an airline company holds over a set
of slots at the beginning of the simulation.

IdentityMessage It sends the identification data of the entities stored in the backend to
the RESTful API clients, in order to avoid unnecessary data access
and sending.

IntervalMessage It contains the attributes that store the data related to the capacity of
the coordination interval of an airport.

LandingFeeMessage The classô attributes contain the charge that shall be paid each time
an aircraft type lands on a concrete airport.

ScenarioMessage It implements the message sent to the RESTful API containing the
attributes that characterizes a scenario of the simulation.

TurnaroundMessage The classô attributes hold the time the turnaround time needed by and
aircraft of an airline company in an airport.

Table 48. Message package

Simulation and Analysis Toolset

© ACCESS Consortium Page 44 of 85

Message.helper package

Class Description

AircraftMessageHelper It implements the validation of the AircraftMessage instances sent to
the RESTful API and the methods to enable its conversion to Aircraft
instances and vice versa.

AirlineMessageHelper It implements the validation of the AirlineMessage instances sent to
the RESTful API and the methods to enable its conversion to Airline
instances and vice versa.

AirportMessageHelper It implements the validation of the AirportMessage instances sent to
the RESTful API and the methods to enable its conversion to Airport
instances and vice versa.

AllianceMessageHelper It implements the validation of the AllianceMessage instances sent to
the RESTful API and the methods to enable its conversion to Alliance
instances and vice versa.

ExperimentMessageHelper It implements the validation of the ExperimentMessage instances sent
to the RESTful API and the methods to enable its conversion to
Experiment instances and vice versa.

ScenarioMessageHelper It implements the validation of the ScenarioMessage instances sent to
the RESTful API and the methods to enable its conversion to Scenario
instances and vice versa.

Table 49. Message.helper package

Model package

Class Description

AbstractEntity It is the root class of the package, implementing means to maintain
administration information of the instances in the data repository.

Aircraft It contains the attributes that represent an aircraft type. It will be
mapped to the Aircraft table.

Airline It contains the attributes that represent an airline company. It will be
mapped to the Airline table.

Airport It contains the attributes that represent an airport. It will be mapped to
the Airport table.

Alliance The bean class contains the attributes that represent an alliance. It
will be mapped to the Alliance table.

CoordinatedAirport It inherits the Airport class adding the attributes necessary for
characterise the coordinated airports. It will be mapped to the
coordinated_airport table.

CoordinationInterval It encloses the attributes which define the capacity available on a
coordinated airport at a given coordinated time interval. It will be
mapped to the coordination_interval table.

DemandProfile It encloses the attributes that define the profile/forecasted/actual
passengersô demand between two airports. It will be mapped to the
demand_profile table.

Simulation and Analysis Toolset

© ACCESS Consortium Page 45 of 85

Model package

DemandUtility It encloses the attributes defining the utility perceived by the
passengers travelling from an origin airport to a destination airport. It
will be mapped to the demand_utility table.

Experiment It contains the attributes that characterise an experiment. It will be
mapped to the experiment_table.

Fleet It contains the association data of an aircraft type to an airline
company. It will be mapped to the fleet table.

GrandfatherRight It defines the grandfather rights that an airline company maintains
over a slot. It will be mapped to the grandfather_right table.

Hub It contains the attributes that relation an airport to the airline
companies that use it as hub of their operations. It will be mapped to
the hub table.

LandingFee It encloses the attributes that define the charge made for the use of a
slot in a coordinated airport. It will be mapped to the landing_fee
table.

PrimaryAllocationConfiguration It encloses the attributes that will be shared by all the primary
allocation mechanisms. It will be mapped to the
primary_allocation_configuration table.

RollingInterval It encloses the attributes that define the restrictions on the continuous
capacity utilization of a coordinated airport. It will be mapped to the
rolling_interval table.

Scenario It contains the attributes that characterize a scenario. It will be
mapped to the scenario table.

ScenarioAirline It encloses the attributes that represent the association of an airline
company to a scenario. It will be mapped to the scenario_airline
class.

ScenarioAirport It encloses the attributes that represent the association of an airport
to a scenario. It will be mapped to the scenario_airport class.

SecondaryAllocationConfiguration It encloses the attributes that will be shared by all the secondary
allocation mechanisms. It will be mapped to the
secondary_allocation_configuration table.

Turnaround It encloses the attributes that specify the time needed by an aircraft
to be ready for the next take-off after a landing. It will be mapped to
the turnaround table.

User It contains the attributes that define a user of the simulation platform.
It will be mapped with the user table.

Table 50. Model package

Simulation and Analysis Toolset

© ACCESS Consortium Page 46 of 85

Model.enumerated package

Class Description

AirlineBusinessModel Enumeration representing the possible business models of the airline
companies. Possible values are: NETWORK, LOW_COST,
REGIONAL, CHARTER and CARGO.

AirportLevel Enumeration representing the possible levels that can have an airport.
Possible values are: COORDINATED, NON_COORDINATED and
SCHEDULE_FACILITATED.

AirportType Enumeration representing the different types of airports. Possible
values are: PRIMARY and SECONDARY.

AuctionInitialValueType Enumeration representing the possible values for the initial prices of
the slots in an auction process. Possible values are: ZERO and
PREVIOUS_VALUE.

AuctionStopCriteria Enumeration representing the configuration of the stop criteria in an
auction process. Possible values are: C1, C2, C3, C1_OR_C2,
C1_OR_C3, C2_OR_C3, C2_AND_C3, C1_OR_C2_AND_C3 and
C1_OR_C2_OR_C3.

ExperimentStatus Enumeration representing the execution status of an experiment.
Possible values are: WAITING, PROCESSING, COMPLETED and
ERROR.

FuelPriceType Enumeration representing the type of fuel price profile. Possible
values are: HIGH_PRICE, REFERENCE and LOW_PRICE.

PrimarySlotAllocationType Enumeration representing the available primary slot allocation
mechanisms.

Role Enumeration representing the possible role of a user of the simulation
platform. Possible values are: ROLE_ADMIN and ROLE_USER.

Schema Enumeration representing the different schemas that can be defined
for landing fees and coordination interval capacity profiles. Possible
values are: UNIFORM and TIME_BASED.

SecondarySlotAllocationType Enumeration representing the available secondary slot allocation
mechanisms.

SlotType Enumeration representing the type of slots in a coordinated airport.
Possible values are: DEPARTURE and ARRIVAL.

TieBreakingMechanism Enumeration representing the tie breaking mechanisms the slot
coordination interval can employ.

Volatility Enumeration representing the volatility of the exogenous factors
(demand and fuel profile). Possible values are: HIGH, MEDIUM and
LOW.

Table 51. Model.enumerated package

Simulation and Analysis Toolset

© ACCESS Consortium Page 47 of 85

Repository package

Class Description

AircraftRepository It implements the interface of the data repository for the Aircraft
instances.

AirlineRepository It implements the interface of the data repository for the Airline
instances.

AirportRepository It implements the interface of the data repository for the Airport
instances.

AllianceRepository It implements the interface of the data repository for Alliance
instances.

CommonParameterRepository It implements the interface of the data repository for the
CommonParameter instances.

CoordinatedAirportRepository It implements the interface of the data repository for the
CoordinatedAirport instances.

ExperimentRepository It implements the interface of the data repository for the Experiment
instances.

FuelPriceProfileRepository It implements the interface of the data repository for the
FuelPriceProfile instances.

ScenarioRepository It implements the interface of the data repository for the Scenario
instances.

UserRepository Itimplements the interface of the data repository for the User
instances.

Table 52. Repository package

Resolver package

Class Description

ActiveUser It provides the implementation of the @ActiveUser
annotation.

CurrentUserHandlerMethodArgumentResolver It is responsible for the implementation of the method
that enables the capture of the user session and its
injection when the @ActiveUser annotation is used.

Table 53. Resolver package

Simulation and Analysis Toolset

© ACCESS Consortium Page 48 of 85

Service package

Class Description

AircraftService It is responsible for the implementation of the CRUD operations
related to the Aircraft class.

AirlineService It is responsible for the implementation of the CRUD operations
related to the Airline class.

AirportService It is responsible for the implementation of the CRUD operations
related to the Airport class.

AllianceService It is responsible for the implementation of the CRUD operations
related to the Alliance class.

ExperimentService It is responsible for the implementation of the CRUD operations
related to the Experiment class.

ScenarioService It is responsible for the implementation of the CRUD operations
related to the Scenario class.

UserService It is responsible for the implementation of the CRUD operations
related to the User class.

Table 54. Service package

The next diagram illustrates how the classes of the different packages are connected. The diagram presents
the classes related to the Aircraft entity. This entity has no other entities associated to it, so it represents a
good simplification to understand these mechanisms.

Due the fingerprint of the classes, only two classes can enclose the data that define an aircraft entity:
AircraftMessage and Aircraft. The first one is part of the JSON message that reaches the RESTful API and is
transformed into a new AircraftMessage. The new instance comes to the AircraftController whose first
operation is to ask the AircraftMessageHelper for the validation of its contents and the transformation into an
Aircraft instance that it can manage along the rest of the process. The reason for this apparent duplicity is to
decouple the format of the messages sent between back-end and front-end and the design of the data
repository, as each one follows different purposes.

Once the Aircraft instance has been generated, the AircraftController checks the authorisation information
provided by the ActiveUser class to ensure that the user has enough permissions to perform the requested
operation and the affected entity is under his control, as a user should not be able to alter an entity created by
another user.

If all checks are passed, the AircraftService will be called to perform the requested operation in collaboration
with the AircraftRepository that provides the access to the data repository for the retrieving of current
affected entities and the storage of the final result of the operation to ensure its persistence over time. Finally,
the response of the AircraftService is sent back to the AircraftController, which transforms it in a legible
message for the user and send it back to the client of the API who originated the request.

Simulation and Analysis Toolset

© ACCESS Consortium Page 49 of 85

Figure 10 Classes diagram related to the Aircraft entity

3.3.1.2 Front-end design

The ACCESS simulation platform implements a Graphical User Interface (GUI) that allows a natural interaction
with the platform. The GUI has been developed using web technologies, which means the users will be able to
access the platform from any device connected to the Internet using a standard browser, instead of using an
application installed on their local device.

The GUI of the platform will be rendŜǊŜŘ ƛƴ ǘƘŜ ǳǎŜǊΩǎ ōǊƻǿǎŜǊ ǳǎƛƴƎ ŦƛƭŜǎ ƻŦ ǘƘǊŜŜ ǘȅǇŜǎΥ I¢a[Σ /{{ ŀƴŘ
JavaScript, as well as other additional resources (images, fonts, etc.). The front-end component will be
responsible for gathering the data generated by the back-end, processing the files needed by the browser and
managing the views presented to the user. Different frameworks have been used as described in section 3.1.2.
The concrete version of these frameworks will be provided within the application and sent together with it to
ǘƘŜ ǳǎŜǊΩǎ browser.

The next tables show the organisation of the code that implements the front-end of the simulation platform.

